Abstract
This article introduces the basic element to build an augmented reality system allowing to insert a 2D object in a real 3D scene in real time. The first step consists in locating the place where to insert the object using an abstract marker, this marker is a rectangle that surrounds the minimum area of the object's contour detected through its color. This rectangle is a plane surface that provides the position of its four points in the images acquired in real time which allows to have a real time tracking of the detected object. Planar homography describes exactly the relationship between the key points if the scene is flat and only requires four key points to produce an exact solution of the camera position to align a 2D virtual object in a 3D real scene.
Similar content being viewed by others
References
Abidi MA, Chandra T (1995) A new efficient and direct solution for pose estimation using quadrangular targets: algorithm and evaluation. IEEE Trans Pattern Anal Mach Intell 17(5):534−538. https://doi.org/10.1109/34.391388
Agarwal A, Jawahar CV, Narayanan PJ (2005) A survey of planar homography estimation techniques
Ajanki A et al (2011) An augmented reality interface to contextual information. Virtual Real 15(2−3):161−173. https://doi.org/10.1007/s10055-010-0183-5
Almenara JC, Osuna JB (2016) The educational possibilities of augmented reality. J New Approach Educ Res 6(1):44−50. https://doi.org/10.7821/naer.2016.1.140
Amin D, Govilkar S (2015) Comparative Study of Augmented Reality Sdk’s. Int J Comput Sci Appl 5(1):11−26. https://doi.org/10.5121/ijcsa.2015.5102
Annich A, El Abderrahmani A, Satori K (2017) Fast and easy 3D reconstruction with the help of geometric constraints and genetic algorithms. 3D Res 8(3). https://doi.org/10.1007/s13319-017-0139-6
Azuma RT (1997) A survey of augmented reality. Presence: Teleoperators and Virtual Environments. p. 355-385
Azuma R, Baillot Y, Behringer R, Feiner S (2011) S. Julie r and B. MacIntyre. Recent advances in augmented reality. IEEE Comput Graph Appl 21(6):34−47. https://doi.org/10.1109/38.963459
Basori AH, Afif FN, Almazyad AS, AbuJabal HAS, Rehman A, Alkawaz MH (2015) Fast markerless tracking for augmented reality in planar environment. 3D Res 6(4) https://doi.org/10.1007/s13319-015-0072-5
Bay H, Tuytelaars T, Van Gool L (2006) SURF: Speeded Up Robust Features. In Computer Vision – ECCV, (2006) vol. 3951, A. Leonardis, H. Bischof, et A. Pinz, Éd. Berlin, Heidelberg: Springer, Berlin Heidelberg 2006:404–417
Benhimane S, Malis E (2007) Homography-based 2D visual tracking and serving. Int J Robot Res 26(7):661−676. https://doi.org/10.1177/0278364907080252
Chalhoub J, Ayer JK (2019) Exploring the performance of an augmented reality application for construction layout tasks. Multimed Tools Appl 78(24):35075−35098. https://doi.org/10.1007/s11042-019-08063-5
Caudell T, Mizell D (1992) Augmented reality: An application of heads-up display technology to manual manufacturing processes. In Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences 2:659−669. https://doi.org/10.1109/HICSS.1992.183317
El Batteoui I, Saaidi A, Satori K (2015) Accurate self-calibration of camera with variable Intrinsic parameters from unknown 3D scene. 3D Res 6(3). https://doi.org/10.1007/s13319-015-0065-4
El Hazzat S, Saaidi A, Karam A, Satori K (2015) Incremental multi-view 3D reconstruction starting from two images taken by a stereo pair of cameras. 3D Res 6(1). https://doi.org/10.1007/s13319-015-0041-z
Gauglitz S, Höllerer T, Turk M (2011) Evaluation of interest point detectors and feature descriptors for visual tracking. Int J Comput Vis 94(3):335−360. https://doi.org/10.1007/s11263-011-0431-5
Geng Y et al (2017) Learning convolutional neural network to maximize Pos@Top performance measure. ArXiv160908417 Cs, [En ligne]. Disponible sur. http://arxiv.org/abs/1609.08417
Golub GH, Reinsch C (1970) Singular value decomposition and least squares solutions. Numer Math 14(5):403−420. https://doi.org/10.1007/BF02163027
Grasset R, Gascuel JD (2001) Environnement de Réalité Augmentée Collaboratif: Manipulation d’Objets Réels et Virtuels
Gribaudo M, Moos S, Piazzolla P, Porpiglia F, Vezzetti E, Violante MG (2020) Enhancing Spatial Navigation in Robot-Assisted Surgery: An Application. In Design Tools and Methods in Industrial Engineering, Cham 95−105. https://doi.org/10.1007/978-3-030-31154-4_9
Hartley R, Zisserman A (2001) Multiple view geometry in computer vision. Cambridge University Press, London, first edition
Heikkila J, Silven O (1997) A four-step camera calibration procedure with implicit image correction. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico 1106−1112. https://doi.org/10.1109/CVPR.1997.609468
Huang Z, Boufama B (2002) A semi-automatic camera calibration method for augmented reality. In IEEE International Conference on Systems, Man and Cybernetics, Yasmine Hammamet, Tunisia 4:6. https://doi.org/10.1109/ICSMC.2002.1173372
Hutchison D (2010) BRIEF: Binary Robust Independent Elementary Features. In Computer Vision – ECCV, et al (2010) vol. 6314, K. Daniilidis, P. Maragos, et N. Paragios, Éd. Berlin, Heidelberg: Springer, Berlin Heidelberg 2010:778–792
Jain AK (1989) Fundamentals of digital image processing. Prentice Hall, Englewood Cliffs, NJ
Kato H, Billinghurst M (2019) Marker tracking and HMD calibration for a video-based augmented reality conferencing system 85−94. https://doi.org/10.1109/IWAR.1999.803809
Kenngott HG et al (2018) Mobile, real-time, and point-of-care augmented reality is robust, accurate, and feasible: a prospective pilot study. Surg Endosc 32(6):2958−2967. https://doi.org/10.1007/s00464-018-6151-y
Kim TJ, Huh JH, Kim JM (2018) Bi-directional education contents using VR equipments and augmented reality. Multimed Tools Appl 77(22):30089−30104. https://doi.org/10.1007/s11042-018-6181-4
Koller D, Klinker G, Rose E, Breen D, Whitaker R, Tuceryan M (1997) Real-time vision-based camera tracking for augmented reality applications 87−94. https://doi.org/10.1145/261135.261152
Lepetit V, Moreno-Noguer F, Fua P (2009) EPnP: An accurate on solution to the PnP problem. Int J Comput Vis 81(2):155−166. https://doi.org/10.1007/s11263-008-0152-6
Lima JP et al (2017) Markerless tracking system for augmented reality in the automotive industry. Expert Syst Appl 82:100−114. https://doi.org/10.1016/j.eswa.2017.03.060
Liu L, Li H, Gruteser M (2019) Edge assisted real-time object detection for mobile augmented reality. In The 25th Annual International Conference on Mobile Computing and Networking, Los Cabos Mexico 1−16. https://doi.org/10.1145/3300061.3300116
Lowe DG (1999) Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference on Computer Vision 2:1150−1157. https://doi.org/10.1109/ICCV.1999.790410
Mackay WE (1998) Augmented Reality: Linking real and virtual worlds: a new paradigm for interacting with computers.
Malik S, Roth G, McDonald C (2002) Robust 2D Tracking for Real-time Augmented Reality. In: Proceedings of Vision Interface, Calgary, Alberta, Canada
Marchand E, Uchiyama H, Spindler F (2016) Pose Estimation for Augmented Reality: A Hands-On Survey. IEEE Trans Vis Comput Graph 22(12):2633−2651. https://doi.org/10.1109/TVCG.2015.2513408
Mooser J, Wang L, You S, Neumann U (2007) An Augmented Reality Interface for Mobile Information Retrieval. In Multimedia and Expo, 2007 IEEE International Conference on, Beijing, China 2226−2229. https://doi.org/10.1109/ICME.2007.4285128
Nagymáté G, Kiss RM (2019) Affordable gait analysis using augmented reality markers. PLoS One 14(2). https://doi.org/10.1371/journal.pone.0212319
Nóbrega R, Correia, N (2017) Interactive 3D content insertion in images for multimedia applications. Multimed Tools Appl 76(1):163−197. https://doi.org/10.1007/s11042-015-3031-5
Oufqir Z, Abderrahmani AE, Satori K (2018) Comparative study of object insertion methods on image sequence for augmented reality 5
Oufqir Z, Abderrahmani AE, Satori K (2019) Important method for detecting and tracking based on color 8(5):5
Oufqir Z, El Abderrahmani A, Satori K (2020) From marker to markerless in augmented reality. In Embedded Systems and Artificial Intelligence, Singapore 599−612. https://doi.org/10.1007/978-981-15-0947-6_57
Prince SJD, Xu K, Cheok AD (2002) Augmented reality camera tracking with homographies. IEEE Comput Graph Appl 22(6):39−45. https://doi.org/10.1109/MCG.2002.1046627
Rambach J, Pagani A, Schneider M, Artemenko O, Stricker D (2018) 6DoF object tracking based on 3D scans for sugmented reality remote Live support. Computers 7(1): 6. https://doi.org/10.3390/computers7010006
Rusiñol M, Chazalon J, Diaz-Chito K (2018) Augmented songbook: an augmented reality educational application for raising music awareness. Multimed Tools Appl 77(11):13773−13798. https://doi.org/10.1007/s11042-017-4991-4
Simon G, Fitzgibbon AW, Zisserman A (2000) Markerless tracking using planar structures in the scene. In Proceedings IEEE and ACM International Symposium on Augmented Reality (ISAR (2000) Munich. Germany 120–128. https://doi.org/10.1109/ISAR.2000.880935
Simon G, Berger MO (2002) Pose estimation for planar structures. IEEE Comput Graph Appl 22(6):46−53. https://doi.org/10.1109/MCG.2002.1046628
Shoaib H, Jaffry SW A survey of augmented reality, International Conference on Virtual and Augmented Reality (ICV AR 2015)
Tarko J, Tompkin J, Richardt C (2019) Real-time Virtual Object Insertion for Moving 360° Videos. In The 17th International Conference on Virtual-Reality Continuum and its Applications in Industry, Brisbane QLD Australia 1−9. https://doi.org/10.1145/3359997.3365708
Tobias HH, Steven KF (2004) Mobile augmented reality. In Location Based Services and TeleCartography
Uchiyama H, Saito H, Servières M, Moreau G (2011) Camera tracking by online learning of keypoint arrangements using LLAH in augmented reality applications. Virtual Real 15(2−3):109−117. https://doi.org/10.1007/s10055-010-0173-7
Villegas-Hernandez YS, Guedea-Elizalde F (2017) Marker’s position estimation under uncontrolled environment for augmented reality. Int J Interact Des Manuf IJIDeM 11(3):727−735. https://doi.org/10.1007/s12008-016-0356-x
Wedyan M, AL-Jumaily A, Dorgham O (2020) The use of augmented reality in the diagnosis and treatment of autistic children: a review and a new system. Multimed Tools Appl. https://doi.org/10.1007/s11042-020-08647-6
Zhang G et al (2017) Learning Convolutional Ranking-Score Function by Query Preference Regularization. In Intelligent Data Engineering and Automated Learning – IDEAL. Cham 2017:1–8. https://doi.org/10.1007/978-3-319-68935-7_1
Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22:(11):1330−1334. https://doi.org/10.1109/34.888718
Zhang W, Han B, Hui P (2018a) Jaguar: Low Latency Mobile Augmented Reality with Flexible Tracking. In 2018 ACM Multimedia Conference on Multimedia Conference - MM ’18, Seoul, Republic of Korea 355−363. https://doi.org/10.1145/3240508.3240561
Zhang G, Liang G, Su F, Qu F, Wang JY (2018b) Cross-Domain Attribute Representation Based on Convolutional Neural Network. In Intelligent Computing Methodologies, vol. 10956, D.-S. Huang, M. M. Gromiha, K. Han, et A. Hussain, Éd. Cham: Springer International Publishing 134−142
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Oufqir, Z., Abderrahmani, A.E. & Satori, K. Inserting and tracking a plane object in a three-dimensional scene. Multimed Tools Appl 81, 1357–1373 (2022). https://doi.org/10.1007/s11042-021-11536-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-021-11536-1