Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Texture image retrieval based on fusion of local and global features

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Neither a single local feature nor a single global feature can completely characterize image information, and fusion of two or more complementary features can effectively improve retrieval performance in image retrieval. In this paper, a texture image retrieval method is proposed by fusing global and local features in the spatial domain and the transform domain. In the spatial domain, the local binary pattern (LBP) value of the image is calculated, and the histogram is established as the feature. In the transform domain, the dual-tree complex wavelet transform (DTCWT) is selected to decompose the image into sub-bands, in which the low-frequency approximate sub-band coefficients are modeled by Gaussian Mixture Model (GMM), magnitude sub-band coefficients are modeled by Gamma distribution model, and relative phase sub-band coefficients are modeled by von Mises distribution model; the LBP value of the magnitude sub-band coefficients and the improved local tetra pattern(ILTrP) value of the relative phase sub-band coefficients are calculated. According to the influence of different types of features on retrieval performance, the optimized weight coefficient is set for each type of feature, and accordingly a new similarity measurement formula is proposed. The experimental results on three different image databases of Brodatz database (DB1), MIT VisTex database (DB2) and STex (DB3) show that the average retrieval rate (ARR) of our method for databases DB1, DB2, and DB3 reaches 84.32%, 90.43% and 64.73%, respectively; and compared with the state-of-the-art methods, the ARR in DB1 increases by 1.04%, in DB2 by 0.35%, and in DB3 by 1.68%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Agarwal M, Singhal A, Lall B (2019) Multi-channel local ternary pattern for content-based image retrieval. Pattern Anal Applic 22(4):1585–1596

    Article  MathSciNet  Google Scholar 

  2. Akoushideh A, Maybodi BMN (2015) Efficient levels of spatial pyramid representation for local binary patterns. IET Comput Vis 9(6):871–883

    Article  Google Scholar 

  3. Alsmadi MK (2020) Content-based image retrieval using color, shape and texture descriptors and features. Arab J Sci Eng 45(4):3317–3330

    Article  Google Scholar 

  4. Aobo Z, Xianbin W, Xin Z (2017) Texture image retrieval algorithm based on improved dual-tree complex wavelet and gray-gradient co-occurrence matrix. Comput Sci 044(006):274–277

    Google Scholar 

  5. Banerjee P, … Murala S (2018) Local neighborhood intensity pattern–a new texture feature descriptor for image retrieval. Expert Syst Appl 113:100–115

    Article  Google Scholar 

  6. Bhunia AK, Bhattacharyya A, Banerjee P, … Murala S (2019) A novel feature descriptor for image retrieval by combining modified color histogram and diagonally symmetric co-occurrence texture pattern. Pattern Anal Applic 23:1–21

    Google Scholar 

  7. Chhabra P, Garg NK, … Kumar M (2020) Content-based image retrieval system using ORB and SIFT features. Neural Comput Applic 32(7):2725–2733

    Article  Google Scholar 

  8. de Ves E, … Benavent X (2014) A statistical model for magnitudes and angles of wavelet frame coefficients and its application to texture retrieval. Pattern Recogn 47(9):2925–2939

    Article  Google Scholar 

  9. Do MN, Vetterli M (2012) Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance. IEEE Trans Image Process 11(2):146–158

    Article  MathSciNet  Google Scholar 

  10. Gupta S, Roy PP, Dogra DP, … Kim BG (2020) Retrieval of colour and texture images using local directional peak valley binary pattern. Pattern Anal Applic 23(4):1569–1585

    Article  Google Scholar 

  11. Huang D et al (2011) Local binary patterns and its application to facial image analysis: a survey. IEEE Trans Syst, Man, Cybern, Part C (Applications and Reviews) 41(6):765–781

    Article  Google Scholar 

  12. Jiang D, Kim J (2017) Texture Image Retrieval Using DTCWT-SVD and Local Binary Pattern Features. JIPS 13(6):1628–1639

    Google Scholar 

  13. Karine A, El Maliani AD, El Hassouni M (2018) A novel statistical model for content-based stereo image retrieval in the complex wavelet domain. J Vis Commun Image Represent 50:27–39

    Article  Google Scholar 

  14. Kingsbury N (2001) Complex wavelets for shift invariant analysis and filtering of signals. Appl Comput Harmonic Anal 10(3):234–253

    Article  MathSciNet  Google Scholar 

  15. Kumar TGS et al (2016) Combining LBP and Contourlet features for image retrieval. Proceedings of International Conference on Communication and Signal Processing (ICCSP). IEEE:1193–1196

  16. Kwitt R, Uhl A (2009) Lightweight probabilistic texture retrieval. IEEE Trans Image Process 19(1):241–253

    Article  MathSciNet  Google Scholar 

  17. Lasmar NE, Berthoumieu Y (2014) Gaussian copula multivariate modeling for texture image retrieval using wavelet transforms. IEEE Trans Image Process 23(5):2246–2261

    Article  MathSciNet  Google Scholar 

  18. Lasmar NE, Berthoumieu Y (2014) Gaussian copula multivariate modeling for texture image retrieval using wavelet transforms. IEEE Trans Image Process 23(5):2246–2261

    Article  MathSciNet  Google Scholar 

  19. Lei Z et al (2010) Face recognition by exploring information jointly in space, scale, and orientation. IEEE Trans Image Process 20(1):247–256

    MathSciNet  Google Scholar 

  20. Li LI, Feng L, Wu J et al (2018) Exploiting global and local features for image retrieval. J Cent South Univ 25(2):259–276

    Article  Google Scholar 

  21. Liu P, Guo JM, Chamnongthai K, … Prasetyo H (2017) Fusion of color histogram and LBP-based features for texture image retrieval and classification. Inf Sci 390:95–111

    Article  Google Scholar 

  22. Murala S (2012) R. P. Maheshwari et al. local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans Image Process 21(5):2874–2886

    Article  MathSciNet  Google Scholar 

  23. Naghashi V (2018) Co-occurrence of adjacent sparse local ternary patterns: a feature descriptor for texture and face image retrieval. Optik 157:877–889

    Article  Google Scholar 

  24. Niu PP, Tian J, Wu QC, … Wang XY (2021) Statistical texture image retrieval in DD-DTCWT domain using magnitudes and relative phases. Multimed Tools Appl 80:1–21

    Article  Google Scholar 

  25. Ojala T, Pietikäinen M, et al. A comparative study of texture measures with classification based on featured distributions. Patt Recogn ,1996,29(1): 51–59.

  26. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  27. Qian X, Hua XS, Chen P, … Ke L (2011) PLBP: an effective local binary patterns texture descriptor with pyramid representation. Pattern Recogn 44(10–11):2502–2515

    Article  Google Scholar 

  28. Qian X, Guo D, Hou X, … Wang Z (2014) HWVP: hierarchical wavelet packet descriptors and their applications in scene categorization and semantic concept retrieval. Multimed Tools Appl 69(3):897–920

    Article  Google Scholar 

  29. Raghuwanshi G, Tyagi V (2020) Texture image retrieval using hybrid directional Extrema pattern. Multimed Tools Appl 80:1–23

    Google Scholar 

  30. Singhal A, Agarwal M. Gaussian local ternary co-occurrence pattern for image retrieval. Advances in Systems Engineering. Springer, Singapore, 2021: 3–9.

  31. Subrahmanyam M, Maheshwari RP et al (2012) Local maximum edge binary patterns: a new descriptor for image retrieval and object tracking. Signal Process 92(6):1467–1479

    Article  Google Scholar 

  32. Verma M, Raman B (2015) Center symmetric local binary co-occurrence pattern for texture, face and bio-medical image retrieval. J Vis Commun Image Represent 32:224–236

    Article  Google Scholar 

  33. Vo A, Oraintara S (2010) A study of relative phase in complex wavelet domain: property, statistics and applications in texture image retrieval and segmentation. Signal Process Image Commun 25(1):28–46

    Article  Google Scholar 

  34. Vo A, Oraintara S, … Nguyen N (2011) Vonn distribution of relative phase for statistical image modeling in complex wavelet domain. Signal Process 91(1):114–125

    Article  Google Scholar 

  35. Wei S, Yupu Z (2019) Enhanced rotation invariant LBP algorithm and its application in image retrieval. CompSci 46(7):263–267

    Google Scholar 

  36. Yang H, Liang L, Zhang C, … Wang XY (2019) Weibull statistical modeling for textured image retrieval using nonsubsampled contourlet transform. Soft Comput 23(13):4749–4764

    Article  Google Scholar 

  37. Yang J, Yongfu L, Wang R et al (2016) Texture image retrieval method based on double generalized Gaussian model and multi-scale fusion. J Electron Inf Technol 38(11):2856–2863

    Google Scholar 

  38. Zhou J, Liu X, Liu W, … Gan J (2019) Image retrieval based on effective feature extraction and diffusion process. Multimed Tools Appl 78(5):6163–6190

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Shandong Provincial Natural Science Foundation of China (No. ZR2014FM016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaijing Qu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Qu, H., Xu, J. et al. Texture image retrieval based on fusion of local and global features. Multimed Tools Appl 81, 14081–14104 (2022). https://doi.org/10.1007/s11042-022-12449-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12449-3

Keywords