Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

ELGONBP: A grouped neighboring intensity difference encoding for texture classification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Local binary pattern (LBP) plays a crucial part in texture classification. Although plenty of LBP-based methods for texture extraction have achieved good classification results, most LBP variants focus on the relationships between the neighboring pixels and its central pixel in an image patch whereas ignoring the information among neighboring pixels, making the extracted texture descriptors not robust enough to external changes (illumination, rotation, noise, etc.). In this paper, a new texture descriptor, the extended local grouped order and non-local binary pattern (ELGONBP) is introduced. Firstly, we propose a first-order difference coding scheme which is based on the sign difference to encode grouped neighborhood difference information. In this way, we can obtain a more complete representation among neighboring sampling points. To further promote the robustness of texture descriptor, we perform cross-image domain information fusion, which combines the texture information in the original image domain and the gradient domain since image gradients contain rich structural information. Comprehensive experiments are implemented on four public representative texture databases and the noise robustness of different descriptors is evaluated. The experimental results prove that the presented ELGONBP descriptor has better classification performance and noise robustness compared with other state-of-the-art LBP descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Algorithm 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bruna J, Mallat S (2013) Invariant scattering convolution networks. IEEE Trans Pattern Anal Mach Intell 35(8):1872–1886

    Article  Google Scholar 

  2. Chan TH, Jia K, Gao S, Lu J, Zeng Z, Ma Y (2015) PCANEt: A simple deep learning baseline for image classification? IEEE Trans Image Process 24(12):5017–5032

    Article  MathSciNet  MATH  Google Scholar 

  3. Cimpoi M, Maji S, Kokkinos I, Vedaldi A (2016) Deep filter banks for texture recognition, description, and segmentation. Int J Comput Vis 118 (1):65–94

    Article  MathSciNet  Google Scholar 

  4. Dana KJ, Van Ginneken B, Nayar SK, Koenderink JJ (1999) Reflectance and texture of real-world surfaces. ACM Transactions On Graphics (TOG) 18(1):1–34

    Article  Google Scholar 

  5. Dubey SR, Singh SK, Singh RK (2016) Multichannel decoded local binary patterns for content-based image retrieval. IEEE Trans Image Process 25 (9):4018–4032

    Article  MathSciNet  MATH  Google Scholar 

  6. Fawad Khan MJ, Riaz MA, Shahid H, Khan MS, Amin Y, Loo J, Tenhunen H (2019) Texture representation through overlapped multi-Oriented tri-Scale local binary pattern. IEEE Access 7:66668–66679. https://doi.org/10.1109/ACCESS.2019.2918004

  7. Guo Z, Wang X, Zhou J, You J (2015) Robust texture image representation by scale selective local binary patterns. IEEE Trans Image Process 25 (2):687–699

    Article  MathSciNet  MATH  Google Scholar 

  8. Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19 (6):1657–1663

    Article  MathSciNet  MATH  Google Scholar 

  9. Guo Z, Zhang L, Zhang D (2010) Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognit 43 (3):706–719

    Article  MATH  Google Scholar 

  10. Hanbay K, Alpaslan N, Talu MF, Hanbay D (2016) Principal curvatures based rotation invariant algorithms for efficient texture classification. Neurocomputing 199:77–89

    Article  Google Scholar 

  11. Hayman E, Caputo B, Fritz M, Eklundh JO (2004) On the significance of real-world conditions for material classification. In: European conference on computer vision, pp 253–266. Springer

  12. Heikkilä M, Pietikäinen M, Schmid C (2009) Description of interest regions with local binary patterns. Pattern Recognit 42(3):425–436

    Article  MATH  Google Scholar 

  13. Hong X, Zhao G, Pietikäinen M, Chen X (2014) Combining LBP difference and feature correlation for texture description. IEEE Trans Image Process 23(6):2557–2568

    Article  MathSciNet  MATH  Google Scholar 

  14. Humeau-Heurtier A (2019) Texture feature extraction methods: a survey. IEEE Access 7:8975–9000

    Article  Google Scholar 

  15. Jia S, Hu J, Zhu J, Jia X, Li Q (2017) Three-dimensional local binary patterns for hyperspectral imagery classification. IEEE Trans Geosci Remote Sens 55(4):2399–2413

    Article  Google Scholar 

  16. Kaya Y, Ertuğrul ÖF, Tekin R (2015) Two novel local binary pattern descriptors for texture analysis. Appl Soft Comput 34:728–735

    Article  Google Scholar 

  17. Khellah FM (2011) Texture classification using dominant neighborhood structure. IEEE Trans Image Process 20(11):3270–3279

    Article  MathSciNet  MATH  Google Scholar 

  18. LeCun Y, Kavukcuoglu K, Farabet C (2010) Convolutional networks and applications in vision. In: Proceedings of 2010 IEEE international symposium on circuits and systems, pp 253–256. IEEE

  19. Liu L, Chen J, Fieguth P, Zhao G, Chellappa R, Pietikäinen M (2019) From BoW to CNN: Two decades of texture representation for texture classification. Int J Comput Vis 127(1):74–109

    Article  Google Scholar 

  20. Liu L, Fieguth P (2012) Texture classification from random features. IEEE transactions on pattern analysis and machine intelligence 34 (3):574–586

    Article  Google Scholar 

  21. Liu L, Lao S, Fieguth PW, Guo Y, Wang X, Pietikäinen M. (2016) Median robust extended local binary pattern for texture classification. IEEE Trans Image Process 25(3):1368–1381

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu L, Long Y, Fieguth PW, Lao S, Zhao G (2014) BRINT: Binary rotation invariant and noise tolerant texture classification. IEEE Trans Image Process 23(7):3071–3084

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu L, Zhao L, Long Y, Kuang G, Fieguth P (2012) Extended local binary patterns for texture classification. Image Vis Comput 30(2):86–99

    Article  Google Scholar 

  24. Maani R, Kalra S, Yang YH (2013) Rotation invariant local frequency descriptors for texture classification. IEEE Trans Image Process 22(6):2409–2419

    Article  MathSciNet  MATH  Google Scholar 

  25. Mehta R, Egiazarian K (2016) Dominant rotated local binary patterns (DRLBP) for texture classification. Pattern Recogn Lett 71:16–22

    Article  Google Scholar 

  26. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Aanal Mach Intell 24(7):971–987

    Article  MATH  Google Scholar 

  27. Pan Z, Fan H, Zhang L (2015) Texture classification using local pattern based on vector quantization. IEEE Trans Image Process 24(12):5379–5388

    Article  MathSciNet  MATH  Google Scholar 

  28. Pan Z, Li Z, Wu X (2018) A new encoding scheme of lbp based on maximum run length of state “1” for texture classification. Multimed Tools Appl 77 (20):26469–26484

    Article  Google Scholar 

  29. Pan Z, Wu X, Li Z (2019) Scale-adaptive local binary pattern for texture classification. Multimedia Tools and Applications, pp 1–24

  30. Pan Z, Wu X, Li Z, Zhou Z (2017) Local adaptive binary patterns using diamond sampling structure for texture classification. IEEE Signal Process Lett 24(6):828–832

    Article  Google Scholar 

  31. Qi X, Xiao R, Li CG, Qiao Y, Guo J, Tang X (2014) Pairwise rotation invariant co-occurrence local binary pattern. IEEE Trans Pattern Anal Mach Intell 36(11):2199–2213

    Article  Google Scholar 

  32. Qi X, Zhao G, Chen J, Pietikäinen M (2015) Hep-2 cell classification:, The role of gaussian scale space theory as a pre-processing approach. arXiv:1509.02320

  33. Rassem TH, Khoo BE (2014) Completed local ternary pattern for rotation invariant texture classification. The Scientific World Journal 2014

  34. Ren J, Jiang X, Yuan J (2013) Noise-resistant local binary pattern with an embedded error-correction mechanism. IEEE Trans Image Process 22 (10):4049–4060

    Article  MathSciNet  MATH  Google Scholar 

  35. Roy SK, Ghosh DK, Dubey SR, Bhattacharyya S, Chaudhuri BB (2020) Unconstrained texture classification using efficient jet texton learning. Appl Soft Comput 86:105910

    Article  Google Scholar 

  36. Ruichek Y, et al. (2019) Attractive-and-repulsive center-symmetric local binary patterns for texture classification. Eng Appl Artif Intell 78:158–172

    Article  Google Scholar 

  37. Ryu J, Hong S, Yang HS (2015) Sorted consecutive local binary pattern for texture classification. IEEE Trans Image Process 24(7):2254–2265

    Article  MathSciNet  MATH  Google Scholar 

  38. Saeed A, Khan MJ, Riaz MA, Shahid H, Khan MS, Amin Y, Loo J, Tenhunen H et al (2019) Robustness-driven hybrid descriptor for noise-deterrent texture classification. IEEE Access 7:110116–110127

    Article  Google Scholar 

  39. Shang J, Chen C, Liang H, Tang H (2016) Object recognition using rotation invariant local binary pattern of significant bit planes. IET Image Process 10(9):662–670

    Article  Google Scholar 

  40. Song T, Feng J, Luo L, Gao C, Li H (2020) Robust texture description using local grouped order pattern and non-local binary pattern. IEEE Transactions on Circuits and Systems for Video Technology

  41. Song T, Li H, Meng F, Wu Q, Luo B, Zeng B, Gabbouj M (2013) Noise-robust texture description using local contrast patterns via global measures. IEEE Signal Process Lett 21(1):93–96

    Article  Google Scholar 

  42. Song T, Luo L, Gao C, Zhang G (2019) Texture representation using local binary encoding across scales, frequency bands and image domains. In: 2019 IEEE International conference on image processing (ICIP), pp 4405–4409. IEEE

  43. Tabatabaei SM, Chalechale A (2020) Noise-tolerant texture feature extraction through directional thresholded local binary pattern. Vis Comput 36 (5):967–987

    Article  Google Scholar 

  44. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650

    Article  MathSciNet  MATH  Google Scholar 

  45. Varma M, Zisserman A (2005) A statistical approach to texture classification from single images. Int J Comput Vis 62(1-2):61–81

    Article  Google Scholar 

  46. Varma M, Zisserman A (2008) A statistical approach to material classification using image patch exemplars. IEEE Trans Pattern Anal Mach Intell 31 (11):2032–2047

    Article  Google Scholar 

  47. Wang K, Bichot C, Zhu C, Li B (2013) Pixel to patch sampling structure and local neighboring intensity relationship patterns for texture classification. IEEE Signal Process Lett 20(9):853–856. https://doi.org/10.1109/LSP.2013.2270405

    Article  Google Scholar 

  48. Wang T, Dong Y, Yang C, Wang L, Liang L, Zheng L, Pu J (2018) Jumping and refined local pattern for texture classification. IEEE Access 6:64416–64426

    Article  Google Scholar 

  49. Wang Z, Fan B, Wu F (2011) Local intensity order pattern for feature description. In: 2011 International conference on computer vision, pp 603–610. IEEE

  50. Wang H, Qu H, Xu J, Wang J, Wei Y, Zhang Z (2022) Texture image retrieval based on fusion of local and global features. Multimed Tools Appl 81(10):14081–14104

    Article  Google Scholar 

  51. Xu X, Li Y, Wu QJ (2020) A multiscale hierarchical threshold-Based completed local entropy binary pattern for texture classification. Cognit Comput 12 (1):224–237

    Article  Google Scholar 

  52. Xu Y, Yang X, Ling H, Ji H (2010) A new texture descriptor using multifractal analysis in multi-orientation wavelet pyramid. In: 2010 IEEE Computer society conference on computer vision and pattern recognition, pp 161–168. IEEE

  53. Yuan F, Xia X, Shi J (2018) Mixed co-occurrence of local binary patterns and Hamming-distance-based local binary patterns. Inf Sci 460:202–222

    Article  Google Scholar 

  54. Zhang B, Gao Y, Zhao S, Liu J (2009) Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhang J, Liang J, Zhao H (2012) Local energy pattern for texture classification using self-adaptive quantization thresholds. IEEE Trans Image Process 22 (1):31–42

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhao Y, Huang DS, Jia W (2012) Completed local binary count for rotation invariant texture classification. IEEE Trans Image Process 21 (10):4492–4497

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhou LF, Du YW, Li WS, Mi JX, Luan X (2018) Pose-robust face recognition with huffman-LBP enhanced by Divide-and-Rule strategy. Pattern Recogn 78:43–55

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (Grant No. 61872131), the Natural Science Foundation of Hunan Province (Grant No.2019JJ50288) and the Research Foundation of the Education Bureau of Hunan Province (Grant No.19B309).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang.

Ethics declarations

Conflict of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Lin, Y. & Yang, J. ELGONBP: A grouped neighboring intensity difference encoding for texture classification. Multimed Tools Appl 82, 10311–10336 (2023). https://doi.org/10.1007/s11042-022-13634-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13634-0

Keywords