Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Length adaptive hashing for semi-supervised semantic image retrieval

  • 1227: Content-based Image Retrieval
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Image Hashing methods have proven to be both effective and efficient for large-scale image retrieval problem. The advances in hashing methods concentrate on the learning of image features and hash tables. Existing hashing methods manually select fixed hash code length for all classes of images in a large database. However, we have observed that the length of the hash code is essential to the retrieval performance but it is rarely studied. Short hash codes cannot preserve similarity among images well while long hash codes may lead to high storage costs. Linear search for the optimal length of hash code length is time-consuming. In this paper, a semi-supervised length adaptive hashing method (LAH) is proposed to adaptively optimize hash code lengths for different semantic image classes using a multiobjective evolutionary algorithm based on decomposition. Two objectives regarding retrieval precision and storage cost are set for optimization. We conduct experiments on three real-world image databases and the experimental results show that the proposed LAH significantly improves the retrieval performance compared to the original traditional semi-supervised hashing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets analysed during the current study of this article will be made available by the authors, without undue reservation.

References

  1. Chen Z, Lu J, Feng J et al (2016) Nonlinear discrete hashing. IEEE Trans Multimed 19(1):123–135. https://doi.org/10.1109/TMM.2016.2620604

    Article  Google Scholar 

  2. Chong Y, Ding Y, Yan Q (2020) Graph-based semi-supervised learning: a review. Neurocomputing 408:216–230. https://doi.org/10.1016/j.neucom.2019.12.130

    Article  Google Scholar 

  3. Datar M, Immorlica N, Indyk P, Mirrokni VS (2004) Locality-sensitive hashing scheme based on p-stable distributions. In: SoCG, pp 253–262. https://doi.org/10.1145/997817.997857

  4. Gilbert A, Bowden R (2015) Geometric mining: scaling geometric hashing to large datasets. In: ICCV, pp 16–24. https://doi.org/10.1109/ICCVW.2015.135

  5. Gong Y, Lazebnik S, Gordo A et al (2012) Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans Pattern Anal Mach Intell 35(12):2916–2929. https://doi.org/10.1109/TPAMI.2012.193

    Article  Google Scholar 

  6. Guo Y, Ding G, Liu L et al (2017) Learning to hash with optimized anchor embedding for scalable retrieval. IEEE Trans Image Process 26 (3):1344–1354. https://doi.org/10.1109/TIP.2017.2652730

    Article  MathSciNet  MATH  Google Scholar 

  7. Heo JP, Lee Y, He J et al (2012) Spherical hashing. In: CVPR, pp 2957–2964. https://doi.org/10.1109/CVPR.2012.6248024

  8. Heo JP, Lee Y, He J et al (2015) Spherical hashing: binary code embedding with hyperspheres. IEEE Trans Pattern Anal Mach Intell 37(11):2304–2316. https://doi.org/10.1109/TPAMI.2015.2408363

    Article  Google Scholar 

  9. Jiang K, Que Q, Kulis B (2015) Revisiting kernelized locality-sensitive hashing for improved large-scale image retrieval. In: CVPR, pp 4933–4941. https://doi.org/10.1109/CVPR.2015.7299127

  10. Jiang YG, Wang J, Xue X et al (2012) Query-adaptive image search with hash codes. IEEE Trans Multimed 15(2):442–453. https://doi.org/10.1109/TMM.2012.2231061

    Article  Google Scholar 

  11. Kang WC, Li WJ (2016) Column sampling based discrete supervised hashing. In: AAAI

  12. Karamti H, Shaiba H, Mahmoud AM (2022) A deep locality-sensitive hashing approach for achieving optimal image retrieval satisfaction. Int J Comput Electr Eng 12(3):2526

    Google Scholar 

  13. Krizhevsky A (2009) Learning multiple layers of features from tiny images. https://www.cs.toronto.edu/~kriz/cifar.html

  14. Kulis B, Grauman K (2009) Kernelized locality-sensitive hashing for scalable image search. In: ICCV, pp 2130–2137. https://doi.org/10.1109/ICCV.2009.5459466

  15. Latif A, Rasheed A, Sajid U et al (2019) Content-based image retrieval and feature extraction: a comprehensive review. Math Probl Eng. https://doi.org/10.1155/2019/9658350

  16. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324. http://yann.lecun.com/exdb/mnist/

    Article  Google Scholar 

  17. Li P, Cheng J, Lu H (2013) Hashing with dual complementary projection learning for fast image retrieval. Neurocomputing 120:83–89. https://doi.org/10.1016/j.neucom.2012.07.053

    Article  Google Scholar 

  18. Li P, Wang M, Cheng J et al (2012) Spectral hashing with semantically consistent graph for image indexing. IEEE Trans Multimed 15(1):141–152. https://doi.org/10.1109/TMM.2012.2199970

    Article  Google Scholar 

  19. Liang X (2021) Robust image hashing with isomap and saliency map for copy detection. IEEE Trans Multimed, Wu J

  20. Liang X, Tang Z, Huang Z (2021) Efficient hashing method using 2d-2d PCA for image copy detection. IEEE Trans Knowl data En

  21. Liu X, He J, Lang B et al (2013) Hash bit selection: a unified solution for selection problems in hashing. In: CVPR, pp 1570–1577. https://doi.org/10.1109/CVPR.2013.206

  22. Liu X, Huang L, Deng C et al (2016) Query-adaptive hash code ranking for large-scale multi-view visual search. IEEE Trans Image Process 25 (10):4514–4524. https://doi.org/10.1109/TIP.2016.2593344

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu L, Yu M, Shao L (2015) Unsupervised local feature hashing for image similarity search. IEEE Trans Cyber 46(11):2548–2558. https://doi.org/10.1109/TCYB.2015.2480966

    Article  Google Scholar 

  24. Lv Y, Ng WWY, Zeng Z et al (2015) Asymmetric cyclical hashing for large scale image retrieval. IEEE Trans Multimed 17(8):1225–1235. https://doi.org/10.1109/TMM.2015.2437712

    Article  Google Scholar 

  25. Ng WWY, Li J, Tian X et al (2022) Bit-wise attention deep complementary supervised hashing for image retrieval. Multimed Tools Appl 81(1):927–951. https://doi.org/10.1007/s11042-021-11494-8

    Article  Google Scholar 

  26. Ng WWY, Lv Y, Zeng Z et al (2017) Sequential conditional entropy maximization semi-supervised hashing for semantic image retrieval. Int J Mach Learn Cyber 8(2):571–586. https://doi.org/10.1007/s13042-015-0350-9

    Article  Google Scholar 

  27. Ng WWY, Zhou X, Tian X et al (2018) Bagging–boosting-based semi-supervised multi-hashing with query-adaptive re-ranking. Neurocomputing 275:916–923. https://doi.org/10.1016/j.neucom.2017.09.042

    Article  Google Scholar 

  28. Ong EJ, Bober M (2016) Improved hamming distance search using variable length substrings. In: CVPR, pp 2000–2008. s

  29. Raginsky M, Lazebnik S (2009) Locality-sensitive binary codes from shift-invariant kernels. In: NIPS, vol 22

  30. Shen F, Shen C, Liu W et al (2015) Supervised discrete hashing. In: CVPR, pp 37–45

  31. Shen F, Shen C, Shi Q et al (2015) Hashing on nonlinear manifolds. IEEE Trans Image Process 24(6):1839–1851. https://doi.org/10.1109/TIP.2015.2405340

    Article  MathSciNet  MATH  Google Scholar 

  32. Shen X, Zhang H, Li L et al (2022) Semi-supervised cross-modal hashing with multi-view graph representation. Inf Sci. https://doi.org/10.1016/j.ins.2022.05.006

  33. Song J, Gao L, Yan Y et al (2015) Supervised hashing with pseudo labels for scalable multimedia retrieval. In: ACM Multimedia, pp 827–830. https://doi.org/10.1145/2733373.2806341

  34. Song Z, Yang X, Xu Z et al (2022) Graph-based semi-supervised learning: a comprehensive review. IEEE Trans Neural Netw Learn Syst 408:216–230

    Google Scholar 

  35. Strecha C, Bronstein A, Bronstein M et al (2011) LDAHAsh: improved matching with smaller descriptors. IEEE Trans Pattern Anal Mach Intell 34(1):66–78. https://doi.org/10.1109/TPAMI.2011.103

    Article  Google Scholar 

  36. Tang J, Wang K, Shao L (2016) Supervised matrix factorization hashing for cross-modal retrieval. IEEE Trans Image Process 25(7):3157–3166. https://doi.org/10.1109/TIP.2016.2564638

    Article  MathSciNet  MATH  Google Scholar 

  37. Tian X, Zhou X, Ng WWY (2020) Bootstrap dual complementary hashing with semi-supervised re-ranking for image retrieval. Neurocomputing 379:103–116

    Article  Google Scholar 

  38. Wang Z, Duan LY, Lin J et al (2014) Component hashing of variable-length binary aggregated descriptors for fast image search. In: ICIP, pp 2217–2221. https://doi.org/10.1109/ICIP.2014.7025449

  39. Wang D, Gao X, Wang X et al (2016) Multimodal discriminative binary embedding for large-scale cross-modal retrieval. IEEE Trans Image Process 25(10):4540–4554. https://doi.org/10.1109/TIP.2016.2592800

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang J, Kumar S, Chang SF (2012) Semi-supervised hashing for large-scale search. IEEE Trans Pattern Anal Mach Intell 34(12):2393–2406. https://doi.org/10.1109/TPAMI.2012.48

    Article  Google Scholar 

  41. Wang Y et al (2021) Unsupervised deep hashing with node representation for image retrieval. Pattern Recognit 112:107785. https://doi.org/10.1016/j.patcog.2020.107785

    Article  Google Scholar 

  42. Weiss Y, Torralba A, Fergus R (2009) Spectral hashing. In: NIPS, pp 1753–1760

  43. Wu F, Yu Z, Yang Y et al (2013) Sparse multi-modal hashing. IEEE Trans Multimed 16(2):427–439. https://doi.org/10.1109/TMM.2013.2291214

    Article  Google Scholar 

  44. Wu C, Zhu J, Cai D et al (2012) Semi-supervised nonlinear hashing using bootstrap sequential projection learning. IEEE Trans Knowl Data Eng 25 (6):1380–1393. https://doi.org/10.1109/TKDE.2012.76

    Article  Google Scholar 

  45. Xu H, Wang J, Li Z et al (2011) Complementary hashing for approximate nearest neighbor search. In: ICCV, pp 1631–1638. https://doi.org/10.1109/ICCV.2011.6126424

  46. Yan X, Zhang L, Li W J (2017) Semi-supervised deep hashing with a bipartite graph. IJCAI:3238–3244

  47. Ye R, Li X (2015) Compact structure hashing via sparse and similarity preserving embedding. IEEE Trans Cyber 46 (3):718–729. https://doi.org/10.1109/TCYB.2015.2414299

    Article  Google Scholar 

  48. Zeng Z, Wu Z, Ng WWY (2015) Projection selection hashing. In: ICWAPR, pp 185–191. https://doi.org/10.1109/ICWAPR.2015.7295948

  49. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11 (6):712–731. https://doi.org/10.1109/TEVC.2007.892759

    Article  Google Scholar 

  50. Zhang J, Peng Y (2017) SSDH: semi-supervised deep hashing for large scale image retrieval. IEEE Trans Circ Syst Vid 29(1):212–225

    Article  MathSciNet  Google Scholar 

  51. Zhu L, Shen J, Xie L et al (2016) Unsupervised visual hashing with semantic assistant for content-based image retrieval. IEEE Trans Knowl Data Eng 29(2):472–486. https://doi.org/10.1109/TKDE.2016.2562624

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Guangdong Natural Science Funds for Distinguished Young Scholars under Grant 2022B1515020049, in part by the Guangdong Regional Joint Fund for Basic and Applied Research under Grant 2021B1515120078.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-chao Lei.

Ethics declarations

Conflict of Interests

We confirm that the order of authors listed in the manuscript has been approved by all of us and all authors declare that no conflicts of interest exits.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xing Tian and Wing W.Y. Ng contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Sc., Tian, X., Ng, W.W. et al. Length adaptive hashing for semi-supervised semantic image retrieval. Multimed Tools Appl 82, 38165–38187 (2023). https://doi.org/10.1007/s11042-023-14377-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-14377-2

Keywords