Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Unsupervised image segmentation evaluation based on feature extraction

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Image segmentation is widely used in life. Generally speaking, the segmentation results are divided into good and bad quality, so it is very important to propose an effective method to evaluate the quality of image segmentation. This paper proposed a framework based on edge detection and feature extraction for evaluating the quality of image segmentation. The framework belongs to unsupervised evaluation, the operation is simple and easy to implement, and readers can add or subtract methods in the framework according to specific circumstances. To prove the effectiveness of the proposed framework, we tested on four different datasets. In addition, we compare the proposed framework with some classic and newer evaluation methods. Experimental results show that the proposed framework is suitable for many types of images, and its performance is better than some existing metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Abusham EEA, Bashir HK (2011) Face recognition using local graph structure (lgs). Human-Comput Interact: Interact Tech Environ Pt Ii 6762:169–175

    Google Scholar 

  2. Achanta R, Hemami S, Estrada F, Susstrunk S (2009) Frequency-tuned salient region detection. In: Cvpr: 2009 IEEE conference on computer vision and pattern recognition, vol 1–4, pp 1597–+. https://doi.org/10.1109/cvpr.2009.5206596

  3. Alpert S, Galun M, Basri R, Brandt A (2007) Image segmentation by probabilistic bottom-up aggregation and cue integration. In: 2007 IEEE Conference on computer vision and pattern recognition, vol 1–8, pp 359–+

  4. Alonso-Fernandez F, Fierrez-Aguilar J, Ortega-Garcia J (2005) An enhanced gabor filter-based segmentation algorithm for fingerprint recognition systems. In: ISPA 2005: proceedings of the 4th international symposium on image and signal processing and analysis, pp 239–244, https://doi.org/10.1109/Ispa.2005.195416

  5. Arbelaez P, Maire M, Fowlkes C, Malik J (2011) Contour detection and hierarchical image segmentation. IEEE Trans Pattern Anal Mach Intell 33(5):898–916. https://doi.org/10.1109/Tpami.2010.161

    Article  Google Scholar 

  6. Audelan B, Delingette H (2021) Unsupervised quality control of segmentations based on a smoothness and intensity probabilistic model. Med Image Anal 68:101895

    Article  Google Scholar 

  7. Badrinarayanan V, Kendall A, Cipolla R (2017) Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 39(12):2481–2495. https://doi.org/10.1109/Tpami.2016.2644615

    Article  Google Scholar 

  8. Benini S, Khan K, Leonardi R, Mauro M, Migliorati P (2019) Face analysis through semantic face segmentation. Signal Process-Image Commun 74:21–31. https://doi.org/10.1016/j.image.2019.01.005

    Article  Google Scholar 

  9. Bezdek JC, Ehrlich R, Full W (1984) Fcm - the fuzzy c-means clustering-algorithm. Comput Geosci 10(2–3):191–203. https://doi.org/10.1016/0098-3004(84)90020-7

    Article  Google Scholar 

  10. Böck S, Immitzer M, Atzberger C (2017) On the objectivity of the objective function—problems with unsupervised segmentation evaluation based on global score and a possible remedy. Remote Sens 9(8):769

    Article  Google Scholar 

  11. Canny J (1986) A computational approach to edge-detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698. https://doi.org/10.1109/Tpami.1986.4767851

    Article  Google Scholar 

  12. Chabrier S, Emile B, Laurent H, Rosenberger C, Marche P (2004) Unsupervised evaluation of image segmentation application to multi-spectral images. Proceedings of the 17th International Conference on Pattern Recognition 1:576–579. https://doi.org/10.1109/Icpr.2004.1334206

    Article  Google Scholar 

  13. Chen Q, Zhao L, Lu J, Kuang G, Wang N, Jiang Y (2012) Modified two-dimensional otsu image segmentation algorithm and fast realisation. Iet Image Process 6(4):426–433. https://doi.org/10.1049/iet-ipr.2010.0078

    Article  MathSciNet  Google Scholar 

  14. Chen BK, Gong C, Yang J (2019) Importance-aware semantic segmentation for autonomous vehicles. IEEE Trans Intell Transp Syst 20(1):137–148. https://doi.org/10.1109/Tits.2018.2801309

    Article  Google Scholar 

  15. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619. https://doi.org/10.1109/34.1000236

    Article  Google Scholar 

  16. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: IEEE Computer society conference on computer vision and pattern recognition, proceedings (2005), vol 1, pp 886–893. https://doi.org/10.1109/cvpr.2005.177

  17. Demidova LA, Tishkin RV (2019) An intellectual approach to segmentation of the satellite images. Workshop on Materials and Engineering in Aeronautics (Mea), 476. https://doi.org/10.1088/1757-899x/476/1/012008

  18. Dietenbeck T, Alessandrini M, Friboulet D, Bernard O (2010) Creaseg: a free software for the evaluation of image segmentation algorithms based on level-set. In: 2010 IEEE International conference on image processing, pp 665–668. https://doi.org/10.1109/Icip.2010.5652991

  19. Everingham M, Van Gool L, Williams CKI, Winn J, Zisserman A The PASCAL visual object classes challenge 2012 (VOC2012) results, http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html

  20. Faggian N, Paplinski A, Chin TJ (2006) Face recognition from video using active appearance model segmentation. In: 18th International conference on pattern recognition, vol 1, Proceedings, pp 287–+

  21. Freixenet J, Munoz X, Raba D, Marti J, Cufi X (2002) Yet another survey on image segmentation: region and boundary information integration. Comput Vis - Eccv 2002 Pt Iii 2352:408–422. https://doi.org/10.1007/3-540-47977-5_27

    Article  Google Scholar 

  22. Ge F, Wang S, Liu TC (2007) New benchmark for image segmentation evaluation. J Electron Imag 16(3). https://doi.org/10.1117/1.2762250

  23. Gu ZW, Cheng J, Fu HZ, Zhou K, Hao HY, Zhao YT, Zhang TY, Gao SH, Liu J (2019) Ce-net: context encoder network for 2d medical image segmentation. Ieee Trans Med Imag 38(10):2281–2292. https://doi.org/10.1109/Tmi.2019.2903562

    Article  Google Scholar 

  24. Hao JS, Shen Y, Xu HB, Zou JX (2009) A region entropy based objective evaluation method for image segmentation. I2mtc: 2009 IEEE Instrumentation & Measurement Technology Conference 1–3:363–+

    Google Scholar 

  25. He NJ, Fang LY, Plaza A (2020) Hybrid first and second order attention unet for building segmentation in remote sensing images. Sci Chin-Inform Sci 63 (4). https://doi.org/10.1007/S11432-019-2791-7

  26. Hesamian MH, Jia W, He XJ, Kennedy P (2019) Deep learning techniques for medical image segmentation: achievements and challenges. J Digit Imaging 32(4):582–596. https://doi.org/10.1007/s10278-019-00227-x

    Article  Google Scholar 

  27. Huttenlocher DP, Klanderman GA, Rucklidge WJ (1993) Comparing images using the hausdorff distance. IEEE Trans Pattern Anal Mach Intell 15 (9):850–863. https://doi.org/10.1109/34.232073

    Article  Google Scholar 

  28. Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman R, Wu AY (2002) An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach Intell 24(7):881–892. https://doi.org/10.1109/Tpami.2002.1017616

    Article  Google Scholar 

  29. Khan JF, Bhuiyan SM (2014) Weighted entropy for segmentation evaluation. Opt Laser Technol 57:236–242. https://doi.org/10.1016/j.optlastec.2013.07.012

    Article  Google Scholar 

  30. Khan AI, Wani MA (2019) Patch-based segmentation of latent fingerprint images using convolutional neural network. Appl Artif Intell 33(1):87–100. https://doi.org/10.1080/08839514.2018.1526704

    Article  Google Scholar 

  31. Lei T, Jia XH, Zhang YN, He LF, Meng HY, Nandi AK (2018) Significantly fast and robust fuzzy c-means clustering algorithm based on morphological reconstruction and membership filtering. IEEE Trans Fuzzy Syst 26 (5):3027–3041. https://doi.org/10.1109/Tfuzz.2018.2796074

    Article  Google Scholar 

  32. Liu Y, Payeur P (2003) Robust image-based detection of activity for traffic control. Canad J Electr Comput Eng-Revue Canadienne De Genie Electrique Et Informatique 28(2):63–67. https://doi.org/10.1109/Cjece.2003.1532510

    Article  Google Scholar 

  33. Liu CJ, Wechsler H (2002) Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans Image Process 11(4):467–476. https://doi.org/10.1109/Tip.2002.999679

    Article  Google Scholar 

  34. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: 2015 IEEE Conference on computer vision and pattern recognition (Cvpr), pp 3431–3440. https://doi.org/10.1109/cvpr.2015.7298965

  35. Marr D, Hildreth E (1980) Theory of edge-detection. Proc R Soc Series B-Biol Sci 207(1167):187–217. https://doi.org/10.1098/rspb.1980.0020

    Article  Google Scholar 

  36. Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Eighth IEEE International conference on computer vision, vol II, proceedings, pp 416–423. https://doi.org/10.1109/iccv.2001.937655

  37. Miao Y, Shi WL (2012) Level set segmentation method in medical image segmentation research and application. Mechatron Appl Mech Pts 1 and 2 157-158:1012–1015. https://doi.org/10.4028/www.scientific.net/AMM.157-158.1012

    Article  Google Scholar 

  38. Nasution TY, Zarlis M, Nasution MKM (2017) Optimizing robinson operator with ant colony optimization as a digital image edge detection method. In: International conference on information and communication technology (Iconict), p 930, https://doi.org/10.1088/1742-6596/930/1/012034

  39. Nazif AM, Levine MD (1984) Low-level image segmentation - an expert system. IEEE Trans Pattern Anal Mach Intell 6(5):555–577. https://doi.org/10.1109/Tpami.1984.4767570

    Article  Google Scholar 

  40. Nie X, Duan MY, Ding HX, Hu BL, Wong EK (2020) Attention mask r-cnn for ship detection and segmentation from remote sensing images. Ieee Access 8:9325–9334. https://doi.org/10.1109/Access.2020.2964540

    Article  Google Scholar 

  41. Ojala T, Pietikainen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distributions. Pattern Recogn 29(1):51–59. https://doi.org/10.1016/0031-3203(95)00067-4

    Article  Google Scholar 

  42. Ojala T, Pietikainen M, Maenpaa T (2000) Gray scale and rotation invariant texture classification with local binary patterns. Comput Vis - Eccv Pt I, Proc 1842(2000):404–420

    Google Scholar 

  43. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987. https://doi.org/10.1109/Tpami.2002.1017623

    Article  Google Scholar 

  44. Papadomanolaki M, Vakalopoulou M, Karantzalos K (2019) A novel object-based deep learning framework for semantic segmentation of very high-resolution remote sensing data: comparison with convolutional and fully convolutional networks. Remote Sens 11(6). https://doi.org/10.3390/Rs11060684

  45. Peng B, Li TR (2013) A probabilistic measure for quantitative evaluation of image segmentation. IEEE Signal Process Lett 20(7):689–692. https://doi.org/10.1109/Lsp.2013.2262938

    Article  Google Scholar 

  46. Peng B, Zhang L (2012) Evaluation of image segmentation quality by adaptive ground truth composition. Comput Vis - Eccv Pt Iii 7574(2012):287–300

    Google Scholar 

  47. Peng B, Wang X, Yang Y (2016) Region based exemplar references for image segmentation evaluation. IEEE Signal Process Lett 23(4):459–462. https://doi.org/10.1109/Lsp.2016.2517101

    Article  Google Scholar 

  48. Peng B, Zhang L, Mou XQ, Yang MH (2017) Evaluation of segmentation quality via adaptive composition of reference segmentations. IEEE Trans Pattern Anal Mach Intell 39(10):1929–1941. https://doi.org/10.1109/Tpami.2016.2622703

    Article  Google Scholar 

  49. Pfister T, Simonyan K, Charles J, Zisserman A (2015) Deep convolutional neural networks for efficient pose estimation in gesture videos. Comput Vis - Accv 2014 Pt I 9003:538–552. https://doi.org/10.1007/978-3-319-16865-4_35

    Article  Google Scholar 

  50. Randrianasoa JF, Cettour-Janet P, Kurtz C, Desjardin E, Gançarski P, Bednarek N, Rousseau F, Passat N (2021) Supervised quality evaluation of binary partition trees for object segmentation. Pattern Recogn 111:107667

    Article  Google Scholar 

  51. Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. Med Image Comput Comput-Assisted Interven Pt Iii 9351:234–241. https://doi.org/10.1007/978-3-319-24574-4_28

    Google Scholar 

  52. Shelhamer E, Long J, Darrell T (2017) Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 39 (4):640–651. https://doi.org/10.1109/Tpami.2016.2572683

    Article  Google Scholar 

  53. Simfukwe M, Peng B, Li TR (2016) A data fusion-based framework for image segmentation evaluation. Intell Comput Theories Applic Icic 2016, Pt Ii 9772:534–545. https://doi.org/10.1007/978-3-319-42294-7_48

    Article  Google Scholar 

  54. Simfukwe M, Peng B, Li T (2017) Hosur: a novel measure for evaluation of image segmentation quality. In: IEEE International conference in information and communication technologies, vol 1, pp 10–14

  55. Simfukwe M, Peng B, Li TR (2017) H2: fusion of hog and harris features for image segmentation evaluation. In: 2017 12th International conference on intelligent systems and knowledge engineering (IEEE Iske)

  56. Simfukwe M, Peng B, Li TR (2019) Fusion of measures for image segmentation evaluation. Int J Comput Intell Syst 12(1):379–386. https://doi.org/10.2991/ijcis.2018.125905654

    Article  Google Scholar 

  57. Taha AA, Hanbury A (2015) Metrics for evaluating 3d medical image segmentation: analysis, selection, and tool. BMC Med Imaging 15:29. https://doi.org/10.1186/s12880-015-0068-x

    Article  Google Scholar 

  58. Tetteh GO, Gocht A, Schwieder M, Erasmi S, Conrad C (2020) Unsupervised parameterization for optimal segmentation of agricultural parcels from satellite images in different agricultural landscapes. Remote Sens 12(18):3096

    Article  Google Scholar 

  59. Unnikrishnan R, Pantofaru C, Hebert M (2007) Toward objective evaluation of image segmentation algorithms. IEEE Trans Pattern Anal Mach Intell 29(6):929–944. https://doi.org/10.1109/Tpami.2007.1046

    Article  Google Scholar 

  60. Vese LA, Chan TF (2002) A multiphase level set framework for image segmentation using the mumford and shah model. Int J Comput Vis 50(3):271–293. https://doi.org/10.1023/A:1020874308076

    Article  Google Scholar 

  61. Wang X (2007) Laplacian operator-based edge detectors. IEEE Trans Pattern Anal Mach Intell 29(5):886–U1. https://doi.org/10.1109/Tpami.2007.1027

    Article  Google Scholar 

  62. Wang S, Chen W, Xie SM, Azzari G, Lobell DB (2020) Weakly supervised deep learning for segmentation of remote sensing imagery. Remot Sens 12(2). https://doi.org/10.3390/Rs12020207

  63. Wang ZB, Wang E, Zhu Y (2020) Image segmentation evaluation: a survey of methods. Artificial Intelligence Review. https://doi.org/10.1007/s10462-020-09830-9

  64. Yu HP, He FZ, Pan YT (2019) A novel segmentation model for medical images with intensity inhomogeneity based on adaptive perturbation. Multimed Tools Appl 78(9):11779–11798. https://doi.org/10.1007/s11042-018-6735-5

    Article  Google Scholar 

  65. Zhang Y (1996) A survey on evaluation methods for image segmentation. Pattern Recognit 29(8):1335–1346

    Article  Google Scholar 

  66. Zhang H, Fritts JE, Goldman SA (2004) An entropy-based objective evaluation method for image segmentation. Storage Retriev Methods Applic Multimed 2004(5307):38–49

    Google Scholar 

  67. Zhang H, Fritts JE, Goldman SA (2008) Image segmentation evaluation: a survey of unsupervised methods. Comput Vis Image Underst 110(2):260–280. https://doi.org/10.1016/j.cviu.2007.08.003

    Article  Google Scholar 

  68. Zhao M, Meng Q, Zhang L, Hu D, Zhang Y, Allam M (2020) A fast and effective method for unsupervised segmentation evaluation of remote sensing images. Remote Sens 12(18):3005

    Article  Google Scholar 

  69. Ziolko B, Emms D, Ziolko M (2018) Fuzzy evaluations of image segmentations. IEEE Trans Fuzzy Syst 26(4):1789–1799. https://doi.org/10.1109/Tfuzz.2017.2752130

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the associate editors and the reviewers for their valuable comments and suggestions. The authors also thank Shuai Wang for his generous help. This work was supported by National Key R&D Program of China (No:2022YFF0711700) and Open Fund Project of National Cryosphere Desert Data Center (2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaobin Wang.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liu, X., Wang, E. et al. Unsupervised image segmentation evaluation based on feature extraction. Multimed Tools Appl 83, 4887–4913 (2024). https://doi.org/10.1007/s11042-023-15384-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-15384-z

Keywords