Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A review of image features extraction techniques and their applications in image forensic

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In these modern days, digital images become prominent information on the Internet and Social Media. The images can have a number of features with many secrets. To get these secrets, the information regarding the features of the images must be known. An image passes through the pre-processing stage before retrieving these features. For pre-processing, different operations such as normalization, thresholding, noise removal, etc. are applied to get the relevant features of the image. Feature extraction is the process of converting the input image into corresponding image features with the help of some algorithms such as the key point detector algorithm, edge detection algorithm, noise retrieval algorithm, etc. The objective of this survey article is to explore the latest methods for extracting image features and utilizing them in image forensics. These features are applied to detect the different types of image tampering attacks on the image with their detection techniques. Nowadays, the manipulation of an image is a very easy task with the help of different types of tools and software such as adobe photoshop, google picasa, and GNU’s Not Unix (GNU) Image Manipulation Program (GIMP), etc. To detect image tampering, features of the image play a very crucial role. A detailed review of different image features that are being utilized in image forensics has been done in the paper. The image features are colors, shape, texture, edges, noise, and key points. The different issues and challenges for detecting image tampering available with the existing techniques along with their performance have been presented in this paper. The future scope of the research work in the area of image processing has also been explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38

Similar content being viewed by others

Data availability statement

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Zhang D, Lu G (2004) Review of shape representation and description techniques. Pattern Recognit 37(1):1–19

    Google Scholar 

  2. Deole PA, Longadge R (2014) Content based image retrieval using color feature extraction with KNN classification. IJCSMC 3(5):1274–1280

    Google Scholar 

  3. Kamboj P, Versha R (2013) A brief study of various noise model and filtering techniques. J Glob Res Comput Sci 4(4):166–171

    Google Scholar 

  4. Y. Tao et al (2003) A texture extraction technique using 2D-DFT and Hamming distance. In: Proceedings 5th international conference on computational intelligence and multimedia applications (ICCIMA). IEEE

  5. Zhang G et al (2008) Shape feature extraction using Fourier descriptors with brightness in content-based medical image retrieval. In: 2008 International conference on intelligent information hiding and multimedia signal processing. IEEE

  6. Mueggler E, Bartolozzi C, Scaramuzza D (2017) Fast event-based corner detection, pp 1–8

  7. Duval-Poo MA, Odone F, De Vito E (2015) Edges and corners with shearlets. IEEE Trans Image Process 24(11):3768–3780

    MathSciNet  Google Scholar 

  8. Bagri N, Johari PK (2015) A comparative study on feature extraction using texture and shape for content based image retrieval. Int J Adv Sci Technol 80(4):41–52

    Google Scholar 

  9. Sandhu A, Kochhar A (2012) Content based image retrieval using texture, color and shape for image analysis. Int J Comput Technol 3(1c):149–152

    Google Scholar 

  10. Datta R et al (2008) Image retrieval: ideas, influences, and trends of the new age. ACM Comput Surv (Csur) 40(2):1–60

    Google Scholar 

  11. Amaricai A, Gavriliu CE, Boncalo O (2014) An FPGA sliding window-based architecture harris corner detector. In: 2014 24th International conference on field programmable logic and applications (FPL). IEEE

  12. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2013) A simultaneous feature adaptation and feature selection method for content-based image retrieval systems. Knowl Based Syst 39:85–94

    Google Scholar 

  13. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 6:679–698

    Google Scholar 

  14. Samcovic A, Turan J (2008) Attacks on digital wavelet image watermarks. J Electr Eng Bratisl 59(3):131

    Google Scholar 

  15. Semma A (2021) Writer identification using deep learning with fast keypoints and harris corner detector. Expert Syst Appl 184:115473

    Google Scholar 

  16. Saini LK, Shrivastava V (2014) Analysis of attacks on hybrid DWT-DCT algorithm for digital image watermarking with MATLAB. arXiv:1407.4738

  17. Agarwal S, Pal Priyanka U (2015) Different types of attack in image watermarking including 2D, 3D Images. Int J Sci Eng Res 6(1)

  18. Kumar S, Dutta A (2016) A study on robustness of block entropy based digital image watermarking techniques with respect to various attacks. In: 2016 IEEE International conference on recent trends in electronics, information & communication technology (RTEICT). IEEE

  19. Singh P, Aayush A, Jyoti G (2013) Image watermark attacks: classification & implementation. Int J Electron Commun Technol 4(2)

  20. Hartung FH, Su JK, Girod B (1999) Spread spectrum watermarking: malicious attacks and counterattacks. In: Security and Watermarking of Multimedia Contents, vol 3657. International Society for Optics and Photonics

  21. Moulin P, O’Sullivan JA (2003) Information-theoretic analysis of information hiding. IEEE Trans Inf Theory 49(3):563–593

    MathSciNet  Google Scholar 

  22. Su JK, Eggers JJ, Girod B (2001) Analysis of digital watermarks subjected to optimum linear filtering and additive noise. Signal Process 81(6):1141–1175

    Google Scholar 

  23. Kumar C, Singh AK, Kumar P (2018) A recent survey on image watermarking techniques and its application in e-governance. Multimed Tools Appl 77(3):3597–3622

    Google Scholar 

  24. Mohanty SP et al (2017) Everything you want to know about watermarking: from paper marks to hardware protection: from paper marks to hardware protection. IEEE Consum Electron Mag 6(3):83–91

    Google Scholar 

  25. Singh AK, Dave M, Mohan A (2014) Wavelet based image watermarking: futuristic concepts in information security. Proc Natl Acad Sci, India, Sect A 84:345–359

    Google Scholar 

  26. Sen J, Sen AM, Hemachandran K (2012) An algorithm for digital watermarking of still images for copyright protection. Indian J Comput Sci Eng 3(1):46–52

    Google Scholar 

  27. Voloshynovskiy S et al (2001) Attacks on digital watermarks: classification, estimation based attacks, and benchmarks. IEEE Commun Mag 39(8):118–126

    Google Scholar 

  28. Wang XY et al (2019) Copy-move forgery detection based on compact color content descriptor and Delaunay triangle matching. Multimed Tools Appl 78(2):2311–2344

    Google Scholar 

  29. Wu Y, Abd-Almageed W, Natarajan P (2018) BusterNet: detecting copy-move image forgery with source/target localization. In: Proceedings of the European conference on computer vision (ECCV)

  30. Fan S et al (2017) Image visual realism: from human perception to machine computation. IEEE Trans Pattern Anal Mach Intell 40(9):2180–2193

    Google Scholar 

  31. Abdalla Y, Iqbal MT, Shehata M (2019) Copy-move forgery detection and localization using a generative adversarial network and convolutional neural-network. Information 10(9):286

    Google Scholar 

  32. Harjito B, Prasetyo H (2017) Passive copy-move forgery detection using halftoning-based block truncation coding feature. J Phys Conf Ser 855

  33. Warbhe AD, Dharaskar RV, Thakare VM (2016) A survey on keypoint based copy-paste forgery detection techniques. Procedia Comput Sci 78:61–67

    Google Scholar 

  34. Huang H, Guo W, Zhang Y (2008) Detection of copy-move forgery in digital images using SIFT algorithm. In: 2008 IEEE pacific-asia workshop on computational intelligence and industrial application, vol 2. IEEE

  35. Zhang C, Guo X, Cao X (2010) Duplication localization and segmentation. In: Pacific-rim conference on multimedia. Springer, Berlin

  36. Amerini I et al (2011) A sift-based forensic method for copy-move attack detection and transformation recovery. IEEE Trans Inf Forensics Secur 6(3):1099–1110

    Google Scholar 

  37. Amerini I Irene et al (2010) Geometric tampering estimation by means of a SIFT-based forensic analysis. In: 2010 IEEE international conference on acoustics, speech and signal processing. IEEE

  38. Kaur A, Sharma R (2013) Copy-move forgery detection using DCT and SIFT. Int J Comput Appl 70(7)

  39. Bi X et al (2019) RRU-Net: The ringed residual U-net for image splicing forgery detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops

  40. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, Cham

  41. Iglovikov V, Shvets A (2018) TernausNet: U-net with VGG11 encoder pre-trained on imageNet for image segmentation. Preprint at https://arxiv.org/abs/1801.05746

  42. Çiçek Ö et al (2016) 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: International conference on medical image computing and computer-assisted intervention. Springer, Cham

  43. Shi YQ, Chen C, Chen W (2007) A natural image model approach to splicing detection. In: Proceedings of the 9th workshop on multimedia & security

  44. Fu D, Shi YQ, Su W (2006) Detection of image splicing based on Hilbert-Huang transform and moments of characteristic functions with wavelet decomposition. In: International workshop on digital watermarking. Springer, Berlin

  45. Salloum R, Kuo CC (2019) Efficient image splicing localization via contrastive feature extraction. arXiv:1901.07172

  46. Abid A et al (2018) Exploring patterns enriched in a dataset with contrastive principal component analysis. Nat Commun 9(1):1–7

    Google Scholar 

  47. Johnson MK, Farid H (2005) Exposing digital forgeries by detecting inconsistencies in lighting. In: Proceedings of the 7th workshop on multimedia and security

  48. Hsu YF, Chang SF (2010) Camera response functions for image forensics: an automatic algorithm for splicing detection. IEEE Trans Inf Forensics Secur 5(4):816–825

    Google Scholar 

  49. Zhang D et al (2019) Image splicing localization using noise distribution characteristic. Multimed Tools Appl 78(16):22223–22247

    Google Scholar 

  50. Columbia DVMM (2004) Research lab: columbia image splicing detection evaluation dataset. columbia. http://www.ee.columbia.edu/ln/dvmm/downloads/AuthSplicedDataSet/AuthSplicedDataSet.html

  51. Hsu YF, Chang SF (2006) Detecting image splicing using geometry invariants and camera characteristics consistency. In: 2006 IEEE international conference on multimedia and expo. IEEE

  52. Fang Z, Wang S, Zhang X (2009) Image splicing detection using camera characteristic inconsistency. In: 2009 International conference on multimedia information networking and security, vol 1. IEEE

  53. Dhir V (2017) A review on image forgery & its detection procedure. Int J Adv Res Comput Sci 8(4)

  54. Bharati A et al (2017) Demography-based facial retouching detection using subclass supervised sparse autoencoder. In: 2017 IEEE international joint conference on biometrics (IJCB). IEEE

  55. Bhattacharjee S, Kutter M (1998) Compression tolerant image authentication. In: Proceedings 1998 international conference on image processing (Cat. No. 98CB36269), vol 1, IEEE

  56. Stinson DR (1995) Collision-free hash functions. In: Cryptography theory and practice, pp 234–236

  57. Lu CS, Liao HY (2003) Structural digital signature for image authentication: an incidental distortion resistant scheme. IEEE Trans Multimed 5(2):161–173

    Google Scholar 

  58. Jain A, Singh R, Vatsa M (2018) On detecting GANs and retouching based synthetic alterations. In: 2018 IEEE 9th international conference on biometrics theory, applications and systems (BTAS). IEEE

  59. Szegedy C et al (2017) Inception-v4, inception-ResNet and the impact of residual connections on learning. In: 31st AAAI Conf Artif Intell 2017

  60. Kee E, Farid H (2011) A perceptual metric for photo retouching. Proc Natl Acad Sci 108(50):19907–19912

    Google Scholar 

  61. Bharati A et al (2016) Detecting facial retouching using supervised deep learning. IEEE Trans Inf Forensics Secur 11(9):1903–1913

    Google Scholar 

  62. Mushtaq S, Mir AH (2014) Digital image forgeries and passive image authentication techniques: a survey. Int J Adv Sci Technol 73:15–32

    Google Scholar 

  63. Cao G, Zhao Y, Ni R (2010) Forensic estimation of gamma correction in digital images. In: 2010 IEEE international conference on image processing. IEEE

  64. Chierchia G et al (2014) A Bayesian-MRF approach for PRNU-based image forgery detection. IEEE Trans Inf Forensics Secur 9(4):554–567

    Google Scholar 

  65. Avcibas I et al (2004) A classifier design for detecting image manipulations. In: 2004 International conference on image processing (ICIP’04), vol 4. IEEE

  66. Stamm MC, Liu KR (2010) Forensic estimation and reconstruction of a contrast enhancement mapping. In: 2010 IEEE international conference on acoustics, speech and signal processing. IEEE

  67. Cao G et al (2014) Contrast enhancement-based forensics in digital images. IEEE Trans Inf Forensics Secur 9(3):515–525

    Google Scholar 

  68. Zhao J, Guo J (2013) Passive forensics for copy-move image forgery using a method based on DCT and SVD. Forensic Sci Int 233(1–3):158–166

    Google Scholar 

  69. Sutthiwan P et al (2010) Rake transform and edge statistics for image forgery detection. In: 2010 IEEE international conference on multimedia and expo. IEEE

  70. Jaiswal AK, Srivastava R (2020) A technique for image splicing detection using hybrid feature set. Multimed Tools Appl 1–24

  71. Shah A, El-Alfy ES (2018) Image splicing forgery detection using DCT coefficients with multi-scale LBP. In: 2018 International conference on computing sciences and engineering (ICCSE). IEEE

  72. Alahmadi AA et al (2013) Splicing image forgery detection based on DCT and local binary pattern. In: 2013 IEEE global conference on signal and information processing. IEEE

  73. Chennamma HR, Rangarajan L (2011) Image splicing detection using inherent lens radial distortion. arXiv:1105.4712

  74. Alahmadi A et al (2017) Passive detection of image forgery using DCT and local binary pattern. Signal, Image Video Process 11(1):81–88

    Google Scholar 

  75. El-Alfy ES, Qureshi MA (2015) Combining spatial and DCT based Markov features for enhanced blind detection of image splicing. Pattern Anal Appl 18(3):713–723

    MathSciNet  Google Scholar 

  76. Lin CY et al (2001) Rotation, scale, and translation resilient watermarking for images. IEEE Trans Image Process 10(5):767–782

    Google Scholar 

  77. Kang X, Huang J, Zeng W (2010) Efficient general print-scanning resilient data hiding based on uniform log-polar mapping. IEEE Trans Inf Forensics Secur 5(1):1–12

    Google Scholar 

  78. Zheng D, Zhao J, El Saddik A (2003) RST-invariant digital image watermarking based on log-polar mapping and phase correlation. IEEE Trans Circuits Syst Video Technol 13(8):753–765

    Google Scholar 

  79. Gao X et al (2010) Geometric distortion insensitive image watermarking in affine covariant regions. IEEE Trans Syst, Man, Cybern, Part C (Applications and Reviews) 40(3):278–286

  80. Ohbuchi R, Masuda H, Aono M (1998) Watermarking three-dimensional polygonal models through geometric and topological modifications. IEEE J Sel Areas Commun 16(4):551–560

    Google Scholar 

  81. Craver S et al (1997) On the invertibility of invisible watermarking techniques. In: Proceedings of international conference on image processing, vol 1. IEEE

  82. Kutter M, Voloshynovskiy SV, Herrigel A (2000) Watermark copy attack. In: Security and watermarking of multimedia contents II, vol 3971. International Society for Optics and Photonics

  83. Liu B, Pun CM (2018) Locating splicing forgery by fully convolutional networks and conditional random field. Signal Process Image Commun 66:103–112

    Google Scholar 

  84. Bianchi T, Piva A (2012) Image forgery localization via block-grained analysis of JPEG artifacts. IEEE Trans Inf Forensics Secur 7(3):1003–1017

    Google Scholar 

  85. Ye S, Sun Q, Chang EC (2007) Detecting digital image forgeries by measuring inconsistencies of blocking artifact. In: 2007 IEEE international conference on multimedia and expo. IEEE

  86. Ferrara P et al (2012) Image forgery localization via fine-grained analysis of CFA artifacts. IEEE Trans Inf Forensics Secur 7(5):1566–1577

    Google Scholar 

  87. Cao H, Kot AC (2009) Accurate detection of demosaicing regularity for digital image forensics. IEEE Trans Inf Forensics Secur 4(4):899–910

    Google Scholar 

  88. Yao H et al (2011) Detecting image forgery using perspective constraints. IEEE Signal Process Lett 19(3):123–126

    Google Scholar 

  89. Chaudhari R, Patil AM (2012) Content based image retrieval using color and shape features. Int J Adv Res Electr Electron Instrum Eng 1(5):386–392

    Google Scholar 

  90. Xu X et al (2008) A spine X-ray image retrieval system using partial shape matching. IEEE Trans Inf Technol Biomed 12(1):100–108

    Google Scholar 

  91. Jain A, Muthuganapathy R, Ramani K (2007) Content-based image retrieval using shape and depth from an engineering database. In: International symposium on visual computing. Springer, Berlin

  92. Cui FY, Zou LJ, Song B (2008) Edge feature extraction based on digital image processing techniques. In: 2008 IEEE international conference on automation and logistics. IEEE

  93. Indriani OR et al (2017) Tomatoes classification using K-NN based on GLCM and HSV color space. In: 2017 International conference on innovative and creative information technology (ICITech). IEEE

  94. Jobin CMC, Parvathi RMS (2011) Segmentation of medical image using clustering and watershed algorithms. Am J Appl Sci 8(12):1349

    Google Scholar 

  95. Sural S, Qian G, Pramanik S (2002) Segmentation and histogram generation using the HSV color space for image retrieval. In: Proceedings international conference on image processing, vol 2. IEEE

  96. Bora DJ, Gupta AK (2016) AERASCIS: an efficient and robust approach for satellite color image segmentation. In: 2016 International conference on electrical power and energy systems (ICEPES). IEEE

  97. Bora DJ, Gupta AK (2016) A new efficient color image segmentation approach based on combination of histogram equalization with watershed algorithm.Int J Comput Sci Eng 4(6):156–167

  98. Süsstrunk S, Buckley R, Swen S (1999) Standard RGB color spaces. In: Color and imaging conference, vol 1999. Society for Imaging Science and Technology

  99. Haralick RM, Shanmugam K, Dinstein IH (1973) Textural features for image classification

  100. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recognit 29)(1):51–59

  101. Verma M, Raman B (2016) Local tri-directional patterns: a new texture feature descriptor for image retrieval. Digit Signal Process 51:62–72

    MathSciNet  Google Scholar 

  102. Zhang X et al (2017) A study for texture feature extraction of high-resolution satellite images based on a direction measure and gray level co-occurrence matrix fusion algorithm. Sensors 17(7):1474

    Google Scholar 

  103. Vogel J, Schiele B (2006) Performance evaluation and optimization for content-based image retrieval. Pattern Recognit 39(5):897–909

    Google Scholar 

  104. Hota RN, Venkoparao V, Rajagopal A (2007) Shape based object classification for automated video surveillance with feature selection. In: 10th International conference on information technology (ICIT 2007). IEEE

  105. Tsai YT, Shih HC, Huang CL (2006) Multiple human objects tracking in crowded scenes. In: 18th International conference on pattern recognition (ICPR’06), vol 3. IEEE

  106. Quddus A, Fahmy MM (1999) An improved wavelet-based corner detection technique. In: 1999 IEEE International conference on acoustics, speech, and signal processing (Cat. No. 99CH36258), vol 6. IEEE

  107. Harris C, Stephens M (1988) A combined corner and edge detector. In: Alvey vision conference, vol 15

  108. Peng W et al (2016) Harris scale invariant corner detection algorithm based on the significant region. Int J Signal Process Image Process Pattern Recognit 9(3):413–420

    Google Scholar 

  109. Lotfian S, Foroosh H (2021) Multi-scale keypoint matching. In: 2020 25th International conference on pattern recognition (ICPR). IEEE

  110. Qin J et al (2019) An encrypted image retrieval method based on Harris corner optimization and LSH in cloud computing. IEEE Access 7:24626–24633

    Google Scholar 

  111. Wang H, Wang H (2018) Perceptual hashing-based image copy-move forgery detection. Secur Commun Netw 2018

  112. Wang C et al (2019) An image copy-move forgery detection method based on SURF and PCET. IEEE Access 7:170032–170047

    Google Scholar 

  113. Talib, A et al (2013) Efficient, compact, and dominant color correlogram descriptors for content-based image retrieval. In: Proceedings of the 5th international conferences on advances in multimedia, Venice, Italy

  114. Karkanis SA et al (2003) Computer-aided tumor detection in endoscopic video using color wavelet features. IEEE Trans Inf Technol Biomed 7(3):141–152

    Google Scholar 

  115. Utenpattanant A, Chitsobhuk O, Khawne A (2006) Color descriptor for image retrieval in wavelet domain. In: 2006 8th International conference advanced communication technology, vol 1. IEEE

  116. Nazir A et al (2018) Content based image retrieval system by using HSV color histogram, discrete wavelet transform and edge histogram descriptor. In: 2018 International conference on computing, mathematics and engineering technologies (iCoMET). IEEE

  117. Riaz F et al (2012) Invariant gabor texture descriptors for classification of gastroenterology images. IEEE Trans Biomed Eng 59(10):2893–2904

    Google Scholar 

  118. Yang Y, Newsam S (2008) Comparing SIFT descriptors and Gabor texture features for classification of remote sensed imagery. In: 2008 15th IEEE international conference on image processing. IEEE

  119. Popescu AC, Farid H (2005) Exposing digital forgeries by detecting traces of resampling. IEEE Trans Signal Process 53(2):758–767

    MathSciNet  Google Scholar 

  120. Popescu AC, Farid H (2005) Exposing digital forgeries in color filter array interpolated images. IEEE Trans Signal Process 53(10):3948–3959

    MathSciNet  Google Scholar 

  121. Dettori L, Semler L (2007) A comparison of wavelet, ridgelet, and curvelet-based texture classification algorithms in computed tomography. Comput Biol Med 37(4):486–498

    Google Scholar 

  122. Gómez F, Romero E (2011) Rotation invariant texture characterization using a curvelet based descriptor. Pattern Recognit Lett 32(16):2178–2186

    Google Scholar 

  123. Bayram S, Sencar HT, Memon N (2009) An efficient and robust method for detecting copy-move forgery. In: 2009 IEEE international conference on acoustics, speech and signal processing. IEEE

  124. Li L et al (2013) An efficient scheme for detecting copy-move forged images by local binary patterns. J Inf Hiding Multimed Signal Process 4(1):46–56

    Google Scholar 

  125. Pandey RC et al (2015) Passive copy move forgery detection using SURF, HOG and SIFT features. In: Proceedings of the 3rd international conference on frontiers of intelligent computing: theory and applications (FICTA) 2014. Springer, Cham

  126. Yang B et al (2018) A copy-move forgery detection method based on CMFD-SIFT. Multimed Tools Appl 77(1):837–855

    Google Scholar 

  127. Zheng J et al (2016) Fusion of block and keypoints based approaches for effective copy-move image forgery detection. Multidimens Syst Signal Process 27(4):989–1005

    MathSciNet  Google Scholar 

  128. Soni B, Das PK, Thounaojam DM (2017) Blur invariant block based copy-move forgery detection technique using FWHT features. In: Proceedings of the international conference on watermarking and image processing

  129. Shivakumar BL, Baboo SS (2011) Detection of region duplication forgery in digital images using SURF. Int J Comput Sci Issues 8(4):199

    Google Scholar 

  130. Ardizzone E, Bruno A, Mazzola G (2015) Copy-move forgery detection by matching triangles of keypoints. IEEE Trans Inf Forensics Secur 10(10):2084–2094

    Google Scholar 

  131. Kekre HB et al (2010) Image Retrieval using Texture Features extracted from GLCM, LBG and KPE. Int J Comput Theory Eng 2(5):695

    Google Scholar 

  132. Rampun A, Strange H, Zwiggelaar R (2013) Texture segmentation using different orientations of GLCM features. In: Proceedings of the 6th international conference on computer vision/computer graphics collaboration techniques and applications

  133. Xie J et al (2010) Texture classification via patch-based sparse texton learning. In: 2010 IEEE international conference on image processing. IEEE

  134. Tamura H, Mori S, Yamawaki T (1978) Textural features corresponding to visual perception. IEEE Trans Syst Man Cybern 8(6):460–473

    Google Scholar 

  135. Pu YF, Zhou JL, Yuan X (2009) Fractional differential mask: a fractional differential-based approach for multiscale texture enhancement. IEEE Trans Image Process 19(2):491–511

    MathSciNet  Google Scholar 

  136. Rashid A (2016) Digital watermarking applications and techniques: a brief review. Int J Comput Appl Technol Res 5(3):147–150

    Google Scholar 

  137. Singh P, Chadha RS (2013) A survey of digital watermarking techniques, applications and attacks. Int J Eng Innov Technol 2(9):165–175

    Google Scholar 

  138. Milano D Harmonic incorporated (2012) Content control: digital watermarking and fingerprinting, White Paper. http://www.rhozet.com/whitepapers/Fingerprinting---Watermarking.pdf. Accessed 30 May

  139. Agarwal N, Singh AK, Singh PK (2019) Survey of robust and imperceptible watermarking. Multimed Tools Appl 78(7):8603–8633

    Google Scholar 

  140. Qasim AF, Meziane F, Aspin R (2018) Digital watermarking: Applicability for developing trust in medical imaging workflows state of the art review. Comput Sci Rev 27:45–60

    MathSciNet  Google Scholar 

  141. Allaf AH, Kbir MA (2018) A review of digital watermarking applications for medical image exchange security. In: The proceedings of the third international conference on smart city applications. Springer, Cham

  142. Singh AK et al (eds) (2017) Medical image watermarking: techniques and applications. Springer

  143. Amri H et al (2017) Medical image compression approach based on image resizing, digital watermarking and lossless compression. J Signal Process Syst 87(2):203–214

    MathSciNet  Google Scholar 

  144. Zhou G, Lv D (2011) An overview of digital watermarking in image forensics. In: 2011 4th International joint conference on computational sciences and optimization. IEEE

  145. Lan R, Zhou Y, Tang YY (2015) Quaternionic local ranking binary pattern: a local descriptor of color images. IEEE Trans Image Process 25(2):566–579

    MathSciNet  Google Scholar 

  146. Fujieda S, Takayama K, Hachisuka T (2017) Wavelet convolutional neural networks for texture classification. arXiv:1707.07394

  147. Ji H et al (2012) Wavelet domain multifractal analysis for static and dynamic texture classification. IEEE Trans Image Process 22(1):286–299

    MathSciNet  Google Scholar 

  148. Lyu S, Pan X, Zhang X (2014) Exposing region splicing forgeries with blind local noise estimation. Int J Comput Vis 110:202–221

    Google Scholar 

  149. Huo LZ, Tang P (2011) Spectral and spatial classification of hyperspectral data using SVMs and Gabor textures. In: 2011 IEEE international geoscience and remote sensing symposium. IEEE

  150. He L et al (2016) Discriminative low-rank Gabor filtering for spectral-spatial hyperspectral image classification. IEEE Trans Geosci Remote Sens 55(3):1381–1395

    Google Scholar 

  151. Rubel A et al (2016) Efficiency of texture image enhancement by DCT-based filtering. Neurocomputing 175:948–965

    Google Scholar 

  152. He C et al (2013) Texture classification of PolSAR data based on sparse coding of wavelet polarization textons. IEEE Trans Geosci Remote Sens 51(8):4576–4590

    Google Scholar 

  153. Julesz B, Bergen JR (1983) Human factors and behavioral science: textons, the fundamental elements in preattentive vision and perception of textures. Bell Syst Techn J 62(6):1619–1645

    Google Scholar 

  154. Lukas J, Fridrich J, Goljan M (2005) Determining digital image origin using sensor imperfections. In: Image and video communications and processing 2005, vol 5685. SPIE

  155. Humeau-Heurtier A (2019) Texture feature extraction methods: a survey. IEEE Access 7:8975–9000

    Google Scholar 

  156. Hall-Beyer M (2017) Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales. Int J Remote Sens 38(5):1312–1338

    Google Scholar 

  157. Meshkini K, Ghassemian H (2017) Texture classification using Shearlet transform and GLCM. In: 2017 Iranian conference on electrical engineering (ICEE). IEEE

  158. Lloyd K et al (2017) Detecting violent and abnormal crowd activity using temporal analysis of grey level co-occurrence matrix (GLCM)-based texture measures. Mach Vis Appl 28(3–4):361–371

    Google Scholar 

  159. Deotale NT, Sarode TK (2019) Fabric defect detection adopting combined GLCM, Gabor wavelet features and random decision forest. 3D Res 10(1):5

  160. Sumana IJ et al (2008) Content based image retrieval using curvelet transform. In: 2008 IEEE 10th workshop on multimedia signal processing. IEEE

  161. Sumana IJ, Lu G, Zhang D (2012) Comparison of curvelet and wavelet texture features for content based image retrieval. In: 2012 IEEE international conference on multimedia and expo. IEEE

  162. Monro DM, Rakshit S, Zhang D (2007) DCT-based iris recognition. IEEE Trans Pattern Anal Mach Intell 29(4):586–595

    Google Scholar 

  163. He XJ et al (2005) A new feature of uniformity of image texture directions coinciding with the human eyes perception. In: International conference on fuzzy systems and knowledge discovery. Springer, Berlin

  164. Hemalatha S, Anouncia SM (2017) Unsupervised segmentation of remote sensing images using FD based texture analysis model and ISODATA. Int J Ambient Comput Intell (IJACI) 8(3):58–75

    Google Scholar 

  165. Chaudhuri BB, Sarkar N (1995) Texture segmentation using fractal dimension. IEEE Trans Pattern Anal Mach Intell 17(1):72–77

    Google Scholar 

  166. Zhu Y et al (2020) AR-Net: adaptive attention and residual refinement network for copy-move forgery detection. IEEE Trans Ind Inf 16(10):6714–6723

    Google Scholar 

  167. Wang Y, Kang X, Chen Y (2020) Robust and accurate detection of image copy-move forgery using PCET-SVD and histogram of block similarity measures. J Inf Secur Appl 54:102536

    Google Scholar 

  168. Zhang Q, Lu W, Weng J (2016) Joint image splicing detection in DCT and contourlet transform domain. J Vis Commun Image Represent 40:449–458

    Google Scholar 

  169. He Z et al (2012) Digital image splicing detection based on Markov features in DCT and DWT domain. Pattern Recognit 45(12):4292–4299

    Google Scholar 

  170. Amerini I et al (2014) Splicing forgeries localization through the use of first digit features. In: 2014 IEEE international workshop on information forensics and security (WIFS). IEEE

  171. Liu Y et al (2019) Adversarial learning for constrained image splicing detection and localization based on atrous convolution. IEEE Trans Inf Forensics Secur 14(10):2551–2566

    Google Scholar 

  172. Jin G, Wan X (2017) An improved method for SIFT-based copy-move forgery detection using non-maximum value suppression and optimized J-Linkage. Signal Process Image Commun 57:113–125

    Google Scholar 

  173. Yu L, Han Q, Niu X (2016) Feature point-based copy-move forgery detection: covering the non-textured areas. Multimed Tools Appl 75(2):1159–1176

    Google Scholar 

  174. Warif NB et al (2017) SIFT-symmetry: a robust detection method for copy-move forgery with reflection attack. J Vis Commun Image Represent 46:219–232

    Google Scholar 

  175. Mahalakshmi SD, Vijayalakshmi K, Priyadharsini S (2012) Digital image forgery detection and estimation by exploring basic image manipulations. Digit Investig 8(3–4):215–225

    Google Scholar 

  176. Lin X, Li CT, Hu Y (2013) Exposing image forgery through the detection of contrast enhancement. In: 2013 IEEE international conference on image processing. IEEE

  177. Muhammad G et al (2014) Image forgery detection using steerable pyramid transform and local binary pattern. Mach Vis Appl 25:985–995

    Google Scholar 

  178. Zhao X et al (2014) Passive image-splicing detection by a 2-D noncausal Markov model. IEEE Trans Circuits Syst Video Technol 25(2):185–199

    Google Scholar 

  179. Ding F et al (2014) Edge perpendicular binary coding for USM sharpening detection. IEEE Signal Process Lett 22(3):327–331

    Google Scholar 

  180. Fridrich J, Soukal D, Lukas J (2003) Detection of copy-move forgery in digital images. In: Proceedings of digital forensic research workshop, vol 3

  181. Bappy JH et al (2019) Hybrid LSTM and encoder-decoder architecture for detection of image forgeries. IEEE Trans Image Process 28(7):3286–3300

    MathSciNet  Google Scholar 

  182. Vásquez-Padín D, Comesana P, Pérez-González F (2015) An SVD approach to forensic image resampling detection. In: 2015 23rd European signal processing conference (EUSIPCO). IEEE

  183. Birajdar GK, Mankar VH (2013) Digital image forgery detection using passive techniques: a survey. Digit Investig 10(3):226–245

    Google Scholar 

  184. Li J et al (2014) Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inf Forensics Secur 10(3):507–518

    Google Scholar 

  185. Bayar B, Stamm MC (2017) On the robustness of constrained convolutional neural networks to jpeg post-compression for image resampling detection. In: 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE

  186. Hore A, Ziou D (2011) An edge-sensing generic demosaicing algorithm with application to image resampling. IEEE Trans Image Process 20(11):3136–3150

    MathSciNet  Google Scholar 

  187. Feng X, Cox IJ, Doerr G (2012) Normalized energy density-based forensic detection of resampled images. IEEE Trans Multimed 14(3):536–545

    Google Scholar 

  188. Peng A et al (2015) Countering anti-forensics of image resampling. In: 2015 IEEE international conference on image processing (ICIP). IEEE

  189. Su Y et al (2017) Hierarchical image resampling detection based on blind deconvolution. J Vis Commun Image Represent 48:480–490

    Google Scholar 

  190. Ding F et al (2020) METEOR: measurable energy map toward the estimation of resampling rate via a convolutional neural network. IEEE Trans Circuits Syst Video Technol 30(12):4715–4727

    Google Scholar 

  191. Chen C, Shi YQ, Su W (2008) A machine learning based scheme for double JPEG compression detection. In: 2008 19th International conference on pattern recognition. IEEE

  192. Li B et al (2019) Detecting double JPEG compression and its related anti-forensic operations with CNN. Multimed Tools Appl 78(7):8577–8601

    Google Scholar 

  193. Wang J et al (2020) Non-aligned double JPEG compression detection based on refined Markov features in QDCT domain. J Real-Time Image Process 17(1):7–16

    Google Scholar 

  194. Yue G et al (2022) SMDAF: a novel keypoint based method for copy-move forgery detection. IET Image Process 16(13):3589–3602

    Google Scholar 

  195. Niu Y et al (2019) An enhanced approach for detecting double JPEG compression with the same quantization matrix. Signal Process Image Commun 76:89–96

    Google Scholar 

  196. Kumawat C, Pankajakshan V (2020) A robust JPEG compression detector for image forensics. Signal Process Image Commun 89:116008

    Google Scholar 

  197. Liu X et al (2019) Downscaling factor estimation on pre-JPEG compressed images. IEEE Trans Circuits Syst Video Technol 30(3):618–631

    Google Scholar 

  198. Valenzise G, Tagliasacchi M, Tubaro S (2012) Revealing the traces of JPEG compression anti-forensics. IEEE Trans Inf Forensics Secur 8(2):335–349

    Google Scholar 

  199. Yang J et al (2013) Detecting non-aligned double JPEG compression based on refined intensity difference and calibration. In: International workshop on digital watermarking. Springer, Berlin

  200. Lu Z, Jiang X, Kot A (2017) A novel LBP-based color descriptor for face recognition. In: 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE

  201. Ashraf R et al (2018) Content based image retrieval by using color descriptor and discrete wavelet transform. J Med Syst 42(3):1–12

    Google Scholar 

  202. Patruno C et al (2019) People re-identification using skeleton standard posture and color descriptors from RGB-D data. Pattern Recognit 89:77–90

    Google Scholar 

  203. Xie G et al (2020) Combination of dominant color descriptor and Hu moments in consistent zone for content based image retrieval. IEEE Access 8:146284–146299

    Google Scholar 

  204. Wang Q (2016) Zhang R (2016) Double JPEG compression forensics based on a convolutional neural network. EURASIP J Inf Secur 1:1–12

    Google Scholar 

  205. Agarwal R, Verma OP (2020) An efficient copy move forgery detection using deep learning feature extraction and matching algorithm. Multimed Tools Appl 79(11):7355–7376

    Google Scholar 

  206. Chen X et al (2020) Automatic feature extraction in X-ray image based on deep learning approach for determination of bone age. Future Gener Comput Syst 110:795–801

    Google Scholar 

  207. Bunk, J et al (2017) Detection and localization of image forgeries using resampling features and deep learning. In: 2017 IEEE conference on computer vision and pattern recognition workshops (CVPRW). IEEE

  208. Sunitha K, Krishna AN (2020) Efficient keypoint based copy move forgery detection method using hybrid feature extraction. In: 2020 2nd international conference on innovative mechanisms for industry applications (ICIMIA). IEEE

  209. Zhang Y et al (2016) Image region forgery detection: a deep learning approach. In: SG-CRC, pp 1–11

  210. Meena KB, Tyagi V (2021) A deep learning based method for image splicing detection. J Phys Conf Ser 1714(1)

  211. Hussien NY, Mahmoud RO, Zayed HH (2020) Deep learning on digital image splicing detection using CFA artifacts. Int J Sociotechnol Knowl Dev (IJSKD) 12(2):31–44

    Google Scholar 

  212. Chen C, McCloskey S, Yu J (2017) Image splicing detection via camera response function analysis. In: Proceedings of the IEEE conference on computer vision and pattern recognition

  213. Rao Y, Ni J, Zhao H (2020) Deep learning local descriptor for image splicing detection and localization. IEEE Access 8:25611–25625

    Google Scholar 

  214. El-Latif EI et al (2019) A passive approach for detecting image splicing using deep learning and haar wavelet transform. Int J Comput Netw Inf Secur 11(5)

  215. Ahmed B, Gulliver TA, alZahir S, (2020) Image splicing detection using mask-RCNN. Signal, Image Video Process 14(5):1035–1042

    Google Scholar 

  216. Islam A et al (2020) DOA-GAN: dual-order attentive generative adversarial network for image copy-move forgery detection and localization. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition

  217. Kuznetsov A (2019) Digital image forgery detection using deep learning approach. J Phys Conf Ser 1368(3)

  218. Li Y, Zhou J (2018) Fast and effective image copy-move forgery detection via hierarchical feature point matching. IEEE Trans Inf Forensics Secur 14(5):1307–1322

    Google Scholar 

  219. Dang LM et al (2019) Face image manipulation detection based on a convolutional neural network. Expert Syst Appl 129:156–168

    Google Scholar 

  220. Marra F et al (2019) Incremental learning for the detection and classification of GAN-generated images. In: 2019 IEEE international workshop on information forensics and security (WIFS). IEEE

  221. Dang H et al (2020) On the detection of digital face manipulation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition

  222. Liu GH et al (2011) Image retrieval based on micro-structure descriptor. Pattern Recognit 44(9):2123–2133

    Google Scholar 

  223. Blum M et al (2012) A learned feature descriptor for object recognition in RGB-D data. In: 2012 IEEE international conference on robotics and automation. IEEE

  224. Tian X et al (2014) Feature integration of EODH and Color-SIFT: application to image retrieval based on codebook. Signal Process Image Commun 29(4):530–545

    Google Scholar 

  225. Pun CM, Liu B, Yuan XC (2016) Multi-scale noise estimation for image splicing forgery detection. J Vis Commun Image Represent 38:195–206

    Google Scholar 

  226. Rocha A et al (2011) Vision of the unseen: current trends and challenges in digital image and video forensics. ACM Comput Surv (CSUR) 43(4):1–42

    Google Scholar 

  227. Gupta S, Mohan N, Kaushal P (2021) Passive image forensics using universal techniques: a review. Artif Intell Rev 1–51

  228. Castillo Camacho I, Wang K (2021) A Comprehensive review of deep-learning-based methods for image forensics. J Imaging 7(4):69

    Google Scholar 

  229. Sharma M, Singh S (2001) Evaluation of texture methods for image analysis. In: The 7th Australian and new Zealand intelligent information systems conference. IEEE

  230. Sharma M, Singh S (2002) A comparative study of Fourier descriptors for shape representation and retrieval. In: Proceeding 5th Asian conference on computer vision. Citeseer

  231. Kauppinen H, Seppanen T, Pietikainen M (1995) An experimental comparison of autoregressive and Fourier-based descriptors in 2D shape classification. IEEE Trans Pattern Anal Mach Intell 17(2):201–207

    Google Scholar 

  232. Xiang Y et al (2017) An advanced rotation invariant descriptor for SAR image registration. Remote Sens 9(7):686

    Google Scholar 

  233. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110

    Google Scholar 

  234. Alcantarilla PF, Bartoli A, Davison AJ (2012) KAZE features. In: 12th European conference on computer vision, Florence, Italy

  235. Rajawat M, Tomar DS (2015) A secure watermarking and tampering detection technique on RGB image using 2 level DWT. In: 2015 Fifth international conference on communication systems and network technologies. IEEE

  236. Li B et al (2017) A multi-branch convolutional neural network for detecting double JPEG compression. arXiv:1710.05477

  237. Khan MI, Rahman MM, Sarker MI (2013) Digital watermarking for image authenticationbased on combined DCT, DWT and SVD transformation. arXiv:1307.6328

  238. Wang XY et al (2017) A new keypoint-based copy-move forgery detection for small smooth regions. Multimed Tools Appl 76:23353–23382

    Google Scholar 

  239. Ning X et al (2023) Hyper-sausage coverage function neuron model and learning algorithm for image classification. Pattern Recognit 136:109216

    Google Scholar 

  240. Flenner A et al (2018) Resampling forgery detection using deep learning and A-contrario analysis. arXiv:1803.01711

  241. Muzaffer G, Ulutas G (2019) A new deep learning-based method to detection of copy-move forgery in digital images. In: 2019 Scientific meeting on electrical-electronics & biomedical engineering and computer science (EBBT). IEEE

  242. Zandi M, Mahmoudi-Aznaveh A, Talebpour A (2016) Iterative copy-move forgery detection based on a new interest point detector. IEEE Trans Inf Forensics Secur 11(11):2499–2512

    Google Scholar 

  243. Liu C, Xu J, Wang F (2021) A review of keypoint’s detection and feature description in image registration. Sci Program 2021:1–25

    Google Scholar 

  244. Bibi S et al (2021) Digital image forgery detection using deep autoencoder and CNN features. Hum Cent Comput Inf Sci 11:1–17

    Google Scholar 

  245. Marra F et al (2020) A full-image full-resolution end-to-end-trainable CNN framework for image forgery detection. IEEE Access 8:133488–133502

    Google Scholar 

  246. Samir S et al (2020) Optimization of a pre-trained AlexNet model for detecting and localizing image forgeries. Information 11(5):275

    Google Scholar 

  247. Sharma P, Kumar M, Sharma H (2023) Comprehensive analyses of image forgery detection methods from traditional to deep learning approaches: an evaluation. Multimed Tools Appl 82(12):18117–18150

    Google Scholar 

  248. Dansena P, Bag S, Pal R (2017) Differentiating pen inks in handwritten bank cheques using multi-layer perceptron. In: International conference on pattern recognition and machine intelligence. Springer, Cham

  249. Routray S, Ray AK, Mishra C (2017) Analysis of various image feature extraction methods against noisy image: SIFT, SURF and HOG. In: 2017 Second international conference on electrical, computer and communication technologies (ICECCT). IEEE

  250. Chandrasekhar V et al (2009) CHoG: compressed histogram of gradients a low bit-rate feature descriptor. In: 2009 IEEE Conference on computer vision and pattern recognition. IEEE

  251. Albukhanajer WA, Briffa JA, Jin Y (2014) Evolutionary multiobjective image feature extraction in the presence of noise. IEEE Trans Cybern 45(9):1757–1768

    Google Scholar 

  252. Fan J, Cao H, Kot AC (2013) Estimating EXIF parameters based on noise features for image manipulation detection. IEEE Trans Inf Forensics Secur 8(4):608–618

    Google Scholar 

  253. Jacobson RE, Jenkin RB (2003) Modelling and application of contrast enhancement of visually indistinct colours using simple single band image capture techniques. System 10(10):5

    Google Scholar 

  254. Foote KD (2022) The history of machine learning and its convergent trajectory towards AI. Mach Learn City Appl Archit Urban Des 129–142

  255. Bay H, Tuytelaars T, Van Gool L (2006) Surf: speeded up robust features. In: 9th European conference on computer vision, Graz. Springer, Berlin

  256. Luo C et al (2019) Overview of image matching based on ORB algorithm. J Phys Conf Ser 1237(3)

  257. Zhao Q et al (2009) Stone images retrieval based on color histogram. In: 2009 International conference on image analysis and signal processing. IEEE

  258. Hafner J et al (1995) Efficient color histogram indexing for quadratic form distance functions. IEEE Trans Pattern Anal Mach Intell 17(7):729–736

    Google Scholar 

  259. Ganar AN, Gode CS, Jambhulkar SM (2014) Enhancement of image retrieval by using colour, texture and shape features. In: 2014 International conference on electronic systems, signal processing and computing technologies. IEEE

  260. Swain MJ, Ballard DH (1991) Color indexing. Int J Comput Vis 7(1):11–32

    Google Scholar 

  261. Johnson GM et al (2010) Derivation of a color space for image color difference measurement. Color Res Appl 35(6):387–400

    Google Scholar 

  262. Shao H et al (2008) Image retrieval based on MPEG-7 dominant color descriptor. In: 2008 The 9th international conference for young computer scientists. IEEE

  263. Gou H, Swaminathan A, Wu M (2009) Intrinsic sensor noise features for forensic analysis on scanners and scanned images. IEEE Trans Inf Forensics Secur 4(3):476–491

    Google Scholar 

  264. Mohanaiah P, Sathyanarayana P, GuruKumar L (2013) Image texture feature extraction using GLCM approach. Int J Sci Res Publ 3(5):1–5

    Google Scholar 

  265. Sobania A, Evans JPO (2005) Morphological corner detector using paired triangular structuring elements. Pattern Recognit 38(7):1087–1098

    Google Scholar 

  266. Koo KM, Cha EY (2017) Image recognition performance enhancements using image normalization. Human Cent Comput Inf Sci 7(1):1–11

    Google Scholar 

  267. Liu CL, Zhou XD (2006) Online Japanese character recognition using trajectory-based normalization and direction feature extraction. In: Tenth international workshop on frontiers in handwriting recognition. Suvisoft

  268. Schadt EE et al (2001) Feature extraction and normalization algorithms for high-density oligonucleotide gene expression array data. J Cell Biochem 84(S37):120–125

    Google Scholar 

  269. Pei SC, Lin CN (1995) Image normalization for pattern recognition. Image Vis Comput 13(10):711–723

    Google Scholar 

  270. John J, Mini MG (2016) Multilevel thresholding based segmentation and feature extraction for pulmonary nodule detection. Procedia Technol 24:957–963

    Google Scholar 

  271. Han JG et al (2016) Efficient Markov feature extraction method for image splicing detection using maximization and threshold expansion. J Electron Imaging 25(2):023031–023031

    Google Scholar 

  272. Li W, Huang Q, Srivastava G (2021) Contour feature extraction of medical image based on multi-threshold optimization. Mobile Netw Appl 26:381–389

    Google Scholar 

  273. Dobreva ID et al (2021) Thresholding analysis and feature extraction from 3D ground penetrating radar data for noninvasive assessment of peanut yield. Remote Sens 13(10):1896

  274. Chowdhary CL, Acharjya DP (2020) Segmentation and feature extraction in medical imaging: a systematic review. Procedia Comput Sci 167:26–36

    Google Scholar 

  275. Sezgin M, Sankur BL (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 13(1):146–168

    Google Scholar 

  276. Torres C, Gonzalez CI, Martinez GE (2022) Fuzzy edge-detection as a preprocessing layer in deep neural networks for guitar classification. Sensors 22(15):5892

    Google Scholar 

  277. Asghar K et al (2019) Edge-texture feature-based image forgery detection with cross-dataset evaluation. Mach Vis Appl 30(7–8):1243–1262

    Google Scholar 

  278. Xu Q et al (2014) A distributed canny edge detector: algorithm and FPGA implementation. IEEE Trans Image Process 23(7):2944–2960

    MathSciNet  Google Scholar 

  279. Chen B et al (2018) An improved splicing localization method by fully convolutional networks. IEEE Access 6:69472–69480

    Google Scholar 

  280. Pandey RC, Singh SK, Shukla KK (2015) Passive copy-move forgery detection using speed-up robust features, histogram oriented gradients and scale invariant feature transform. Int J Syst Dyn Appl (IJSDA) 4(3):70–89

    Google Scholar 

  281. Pandey RC et al (2016) Image splicing detection using HMRF-GMM based segmentation technique and local noise variances. INROADS-An Int J Jaipur National University 5(1s):223–228

    Google Scholar 

Download references

Acknowledgements

We hereby declare that the information stated in the article is true to the best of my knowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhirendra Kumar.

Ethics declarations

Conflicts of interests/competing interests

The authors whose names are listed immediately below certify that they have no conflicts of interest to disclose. All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Pandey, R.C. & Mishra, A.K. A review of image features extraction techniques and their applications in image forensic. Multimed Tools Appl 83, 87801–87902 (2024). https://doi.org/10.1007/s11042-023-17950-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-17950-x

Keywords