Abstract
This work presents a frictional contact formulation to solve three-dimensional contact problems with large finite displacements. The kinematic description of the contacting bodies is defined by using a mortar approach. The regularization of the variational frictional contact problem is solved with a mixed dual penalty approach based on an augmented Lagrangian technique. In this method, the numerical results do not depend on the definition of any user-defined penalty parameter affecting the normal or tangential component of forces. The robustness and performance of the proposed algorithm are studied and validated by solving a series of numerical examples with finite displacements and large slip.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alart, P., Curnier, A.: A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Eng. 92(3), 353–375 (1991). doi:10.1016/0045-7825(91)90022-X, http://www.sciencedirect.com/science/article/pii/004578259190022X
Areias, P.M.A., César de Sá, J.M.A., Conceiçao António, C.A.: Algorithms for the analysis of 3D finite strain contact problems. Int. J. Numer. Methods Eng. 61, 1107–1151 (2004)
Armero, F., Petocz, E.: A new dissipative time-stepping algorithm for frictional contact problems: formulation and analysis. Comput. Methods Appl. Mech. Eng. 179, 151–178 (1999)
Bernardi, C., Maday, Y., Patera, A.: A new nonconforming approach to domain decomposition: the mortar element method. In: Brezia, H., Lions, J. (eds.) Nonlinear Partial Differential Equations and Their Applications, pp. 13–51. Pitman/Wiley, London/New York (1992)
Bowling, A., Flickinger, D., Harmeyer, S.: Energetically consistent simulation of simultaneous impacts and contacts in multibody systems with friction. Multibody Syst. Dyn. 22, 27–45 (2009)
Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)
Cardona, A., Igor, K., Geradin, M.: Design of a new finite element programming environment. Eng. Comput. 11, 365–381 (1994)
Cavalieri, F.: Multiaxial fatigue and wear design in mechanical components at high temperature. Thesis, Universidad Nacional del Litoral, http://bibliotecavirtual.unl.edu.ar:8180/tesis/handle/1/200 (2010)
Cavalieri, F.J., Cardona, A.: An augmented Lagrangian method to solve 3D contact problems. Lat. Am. Appl. Res. 42(201), 281–289 (2012)
Cavalieri, F.J., Cardona, A.: An augmented Lagrangian technique combined with a mortar algorithm for modelling mechanical contact problems. Int. J. Numer. Methods Eng. 93(4), 420–442 (2013)
Cavalieri, F.J., Cardona, A.: Three-dimensional numerical solution for wear prediction using a mortar contact algorithm. Int. J. Numer. Methods Eng. 96(8), 467–486 (2013)
Cavalieri, F.J., Fachinotti, V., Cardona, A.: A mortar contact algorithm for three-dimensional elasticity problems. Rev. Int. Métod. Numér. Cálc. Diseño Ing. 28(2), 80–92 (2012)
Cichosz, T., Bischoff, M.: Consistent treatment of boundaries with mortar contact formulations using dual Lagrange multipliers. Comput. Methods Appl. Mech. Eng. 200(9–12), 1317–1332 (2011)
De Lorenzis, L., Temizer, A., Wriggers, P., Zavarise, G.: A large deformation frictional contact formulation using NURBS-based isogeometric analysis. Int. J. Numer. Methods Eng. 87(13), 1278–1300 (2011)
De Lorenzis, L., Wriggers, P., Zavarise, G.: A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method. Comput. Mech. 49(1), 1–20 (2012)
Esche, S., Kinzel, G., Altan, T.: Issues in convergence improvement for non-linear finite element programs. Int. J. Numer. Methods Eng. 40, 4577–4594 (1997)
Fischer, K., Wriggers, P.: Frictionless 2D contact formulations for finite deformations based on the mortar method. Comput. Mech. 36(3), 226–244 (2005)
Fischer, K., Wriggers, P.: Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Comput. Methods Appl. Mech. Eng. 195(37–40), 5020–5036 (2006)
Flores, F.: Un algoritmo de contacto para el análisis explícito de procesos de embutición. Métod. Numér. Cálc. Diseño Ing. 16, 421–432 (2000)
Flores, P., Ambrósio, J.: On the contact detection for contact-impact analysis in multibody systems. Multibody Syst. Dyn. 24, 103–122 (2010)
Förg, M., Pfeiffer, F., Ulbrich, H.: Simulation of unilateral constrained systems with many bodies. Multibody Syst. Dyn. 14, 137–154 (2005)
Gamez-Montero, P., Zárate, F., Sánchez, M., Castilla, R., Codina, E.: El problema del contacto en bombas de engranajes de perfil troncoidal. Métod. Numér. Cálc. Diseño Ing. 21, 213–229 (2005)
Giannakopoulos, A.: The radial mapping method for the integration of friction constitutive relations. Comput. Struct. 6, 281–290 (1989)
Gitterle, M.: A dual mortar formulation for finite deformation frictional contact problems including wear and thermal coupling. Ph.D. thesis, Fakultät für Maschinenwesen der Technischen Universität München (2012)
Gitterle, M., Popp, A., Gee, M.W., Wall, W.A.: Finite deformation frictional mortar contact using a semi-smooth Newton method with consistent linearization. Int. J. Numer. Methods Eng. 84(5), 543–571 (2010). doi:10.1002/nme.2907
Hammer, M.: Frictional mortar contact for finite deformation problems with synthetic contact kinematics. Ph.D. thesis, Institut für Festigkeitslehre der Technischen Universität Graz (2012)
Hartmann, S., Oliver, J., Weyler, R., Cante, J., Hernández, J.: A contact domain method for large deformation frictional contact problems. Part 2: numerical aspects. Comput. Methods Appl. Mech. Eng. 198(33–36), 2607–2631 (2009). doi:10.1016/j.cma.2009.03.009, http://www.sciencedirect.com/science/article/pii/S0045782509001297
Hartmann, S., Ramm, E.: A mortar based contact formulation for non-linear dynamics using dual Lagrange multipliers. Finite Elem. Anal. Des. 44(5), 245–258 (2008)
Hüeber, S., Wohlmuth, B.: A primal dual active set strategy for non-linear multibody contact problems. Comput. Methods Appl. Mech. Eng. 194(27–29), 3147–3166 (2005)
Hüeber, S., Wohlmuth, B.: Thermo-mechanical contact problems on non-matching meshes. Comput. Methods Appl. Mech. Eng. 198(15–16), 1338–1350 (2009)
Heegaard, J., Curnier, A.: An augmented Lagrangian method for discrete large slip contact problems. Int. J. Numer. Methods Eng. 36(4), 569–593 (1993)
Heintz, P., Hansbo, P.: Stabilized Lagrange multiplier methods for bilateral elastic contact with friction. Comput. Methods Appl. Mech. Eng. 195(33–36), 4323–4333 (2006)
Hesch, C., Betsch, P.: Transient three-dimensional domain decomposition problems: frame-indifferent mortar constraints and conserving integration. Int. J. Numer. Methods Eng. 82(3), 329–358 (2010)
Hesch, C., Betsch, P.: Transient three-dimensional contact problems: mortar method. Mixed methods and conserving integration. Comput. Mech. 48(4), 461–475 (2011)
Hüeber, S., Mair, M., Wohlmuth, B.I.: A priori error estimates and an inexact primal-dual active set strategy for linear and quadratic finite elements applied to multibody contact problems. Appl. Numer. Math. 54(3–4), 555–576 (2005)
Ignesti, M., Innocenti, A., Marini, L., Meli, E., Rindi, A.: Development of a model for the simultaneous analysis of wheel and rail wear in railway systems. Multibody Syst. Dyn. 31(2), 191–240 (2014)
Johnson, K.: Contact Mechanics. Cambridge University Press, Cambridge (1987)
Jones, R., Papadopoulos, P.: A novel three-dimensional contact finite element based on smooth pressure interpolations. Int. J. Numer. Methods Eng. 51(7), 791–811 (2001)
Kikuchi, N., Oden, J.: Contact Problems in Elasticity: a Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia (1988)
Kim, J., Youn, S.: Isogeometric contact analysis using mortar method. Int. J. Numer. Methods Eng. 89(12), 1559–1581 (2012)
Krstulovic-Opara, L., Wriggers, P., Korelc, J.: Symbolically generated 3D smooth polynomial frictional contact element based on the quartic Bézier surfaces. In: Oñate, E., Bugeda, G., Suárez, B. (eds.) CD-ROM Proceedings of the European Congress on Computational Methods in Applied Sciences and Engineering. ECCOMAS, Barcelona (2000)
Laursen, T.: Formulation and treatment of frictional contact problems using finite elements. Ph.D. Thesis, Stanford University, USA (1992)
Laursen, T.: Computational Contact and Impact Mechanics. Springer, Berlin (2002)
McDevitt, T.W., Laursen, T.A.: A mortar-finite element formulation for frictional contact problems. Int. J. Numer. Methods Eng. 48(10), 1525–1547 (2000)
Moreau, J.: Application of convex analysis to some problems of dry friction. In: Zorski, H. (ed.) Trends of Pure Mathematics Applied to Mechanics, vol. 11. Pitma, London (1979)
Oden, J., Pire, E.: Algorithms and numerical results for finite element approximation of contact problems with non-classical friction laws. Comput. Struct. 19(1–2), 137–147 (1984)
Oliver, J., Hartmann, S., Cante, J., Weyler, R., Hernández, J.: A contact domain method for large deformation frictional contact problems. Part 1: theoretical basis. Comput. Methods Appl. Mech. Eng. 198(33–36), 2591–2606 (2009). doi:10.1016/j.cma.2009.03.006, http://www.sciencedirect.com/science/article/pii/S004578250900125X
Papadopoulos, P., Solberg, J.: A Lagrange multiplier method for the finite element solution of frictionless contact problems. Math. Comput. Model. 28(4–8), 373–384 (1998)
Papadopoulos, P., Taylor, R.: A mixed formulation for the finite element solution of contact problems. Technical Report UCB/ SEMM Report 90/18, University of California at Berkeley (1990)
Popp, A., Gee, M.W., Wall, W.A.: A finite deformation mortar contact formulation using a primal dual active set strategy. Int. J. Numer. Methods Eng. 79(11), 1354–1391 (2009). doi:10.1002/nme.2614
Popp, A., Gitterle, M., Gee, M.W., Wall, W.: A dual mortar approach for 3D finite deformation contact with consistent linearization. Int. J. Numer. Methods Eng. 83(11), 1428–1465 (2010)
Popp, A., Seitz, A., Gee, M.W., Wall, W.A.: Improved robustness and consistency of 3D contact algorithms based on a dual mortar approach. Comput. Methods Appl. Mech. Eng. 264, 67–80 (2013)
Puso, M.: A 3D mortar method for solid mechanics. Int. J. Numer. Methods Eng. 59(3), 315–336 (2004)
Puso, M., Laursen, T.: A mortar-finite element formulation for frictional contact problems. Comput. Methods Appl. Math. 193, 60l–629 (2004)
Puso, M., Laursen, T.: A mortar segment-to-segment frictional contact method for large deformations. Comput. Methods Appl. Mech. Eng. 193(45–47), 4891–4913 (2004)
Puso, M.A., Laursen, T.A.: A mortar segment-to-segment contact method for large deformation solid mechanics. Comput. Methods Appl. Mech. Eng. 193(6–8), 601–629 (2004). doi:10.1016/j.cma.2003.10.010, http://www.sciencedirect.com/science/article/pii/S0045782503005802
SAMCEF: Mecano V13 user manual. LMS-Samtech S.A. (2007). http://www.lmsintl.com
Simo, J., Laursen, T.: An augmented Lagrangian treatment of contact problems involving friction. Comput. Struct. 42, 97–116 (1992)
Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, Berlin (1998)
Solberg, J., Jones, R., Papadopoulos, P.: A family of simple two-pass dual formulations for the finite element solution of contact problems. Comput. Methods Appl. Mech. Eng. 196(4–6), 782–802 (2007)
Solberg, J., Papadopoulos, P.: An analysis of dual formulations for the finite element solution of two-body contact problems. Comput. Methods Appl. Mech. Eng. 194(25–26), 2734–2780 (2005)
Stadler, M., Holzapfel, G.A.: Subdivision schemes for smooth contact surfaces of arbitrary mesh topology in 3D. Int. J. Numer. Methods Eng. 60(7), 1161–1195 (2004). doi:10.1002/nme.1001
Temizer, A.: A mixed formulation of mortar-based frictionless contact. Comput. Methods Appl. Mech. Eng. 223–224, 173–185 (2012)
Temizer, A.: A mixed formulation of mortar-based contact with friction. Comput. Methods Appl. Mech. Eng. 255, 183–195 (2013)
Temizer, A., Wriggers, P., Hughes, J.: Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Comput. Methods Appl. Mech. Eng. 209–212, 115–128 (2012)
Tur, M., Fuenmayor, F., Wriggers, P.: A mortar-based frictional contact formulation for large deformations using Lagrange multipliers. Comput. Methods Appl. Mech. Eng. 198(37–40), 2860–2873 (2009). doi:10.1016/j.cma.2009.04.007, http://www.sciencedirect.com/science/article/pii/S0045782509001595
Wohlmuth, B.: A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J. Numer. Anal. 38(3), 989–1012 (2000)
Wriggers, P.: Computational Contact Mechanics. Wiley and Sons, New York (2002)
Yang, B., Laursen, T., Meng, X.: Two dimensional mortar contact methods for large deformation frictional sliding. Int. J. Numer. Methods Eng. 62(9), 1183–1225 (2005)
Acknowledgements
This work has received financial support from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PIP 2011/01105, and from Universidad Nacional del Litoral (CAI+D 2011).
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
The linearization of the tangential vector t A is presented. The tangential vector t is used in the slip status, thus
The linearization operator Δ applied to Eq. (38) yields
After some algebraic manipulations, the linearization of the tangential vector is written as
If the variation of the normal vector ν A is neglected, i.e., if the normal vector is computed at the previous time step, the final expression is given by
Rights and permissions
About this article
Cite this article
Cavalieri, F.J., Cardona, A. Numerical solution of frictional contact problems based on a mortar algorithm with an augmented Lagrangian technique. Multibody Syst Dyn 35, 353–375 (2015). https://doi.org/10.1007/s11044-015-9449-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11044-015-9449-8