Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Stability for two-dimensional singular discrete systems described by general model

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This paper discusses the problem of stability for linear discrete 2-D singular general models (2-D SGM). A sufficient condition for the internally stability of the 2-D SGM is derived in terms of linear matrix inequalities (LMIs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Cai C., Wang W., Zou Y. (2004). A note on the internal stability for 2-D acceptable linear singular discrete systems. Multidimensional Systems and Signal Processing 15: 197–204

    Article  MATH  MathSciNet  Google Scholar 

  • Chu B. (2006). Stability of 2-D singular systems. To appear in The 6th World Congress on Intelligent Control and Automation. Dalian, China

    Google Scholar 

  • Dai L. (1989). Singular control systems. Berlin, Springer-Verlag

    MATH  Google Scholar 

  • Du C., Xie L. (2002). H Control and filtering of two-dimensional systems. Heidelberg, Springer-Verlag

    MATH  Google Scholar 

  • Du C., Yang C. (1997). Infinite pole and state response formula for 2-D singular systems. Acta automatic sinica 23: 827–830

    MATH  MathSciNet  Google Scholar 

  • Fan, H., Wen, C., Xu, L., Suda, H., & Anazawa, Y. (2004). Robust adaptive control of a class of 2-D discrete systems in the presence of. In Proceedings of the 47th Midwest Symposium on Circuits and Systems, pages II: 553–556.

  • Kaczorek T. (1985). Two-dimensional linear systems. Berlin, Springer-Verlag

    MATH  Google Scholar 

  • Kaczorek T. (1988). Singular general model of 2-D systems and its solutions. IEEE Trans. Automat. Control 33: 1061–1091

    Article  Google Scholar 

  • Kaczorek T. (1990). General response formula and minimum energy control of the general singular model of 2-D systems. IEEE Trans. Automat. Control 35: 433–436

    Article  MATH  MathSciNet  Google Scholar 

  • Kaczorek T. (1993). Acceptable input sequences for singular 2-D linear systems. IEEE Trans. Automat. Control 38: 1391–1394

    Article  MATH  MathSciNet  Google Scholar 

  • Kar H., Singh V. (2003). Stability of 2-D systems described by the Fornasini–Marchesini first model. IEEE Trans. Signal Processing 6: 1675–1676

    Article  MathSciNet  Google Scholar 

  • Lin Z., Galkowski K., Wood J. (2001). Output feedback stabilizability and stabilization of linear n-D systems. Multidimensional Signals, Circuits and Systems 4: 59–76

    Google Scholar 

  • Lin Z., Ying J., Xu L. (2002). An algebraic approach to strong stabilizability of linear n-D MIMO systems. IEEE Trans. Automat. Control 47: 1510–1514

    Article  MathSciNet  Google Scholar 

  • Wang W.Q., Zou Y. (2002). The detectability and observer design of 2-D singular systems. IEEE Trans. Circuits Syst. I 49: 698–703

    Article  MathSciNet  Google Scholar 

  • Xiao Y., Unbehauen R. (1998). New stability test algorithm for two-dimensional digital filters. IEEE Trans. Circuits Syst. I 45: 739–740

    Article  MATH  MathSciNet  Google Scholar 

  • Xu, L., Lin, Z., & Anazawa, Y. (2005). On the synthesis of stable stabilizing compensators for linear n-D SISO systems. In Proceedings of the International Conference on Control and Automation, pp. 741–744.

  • Xu L., Saito O., Abe K. (1996). Practical internal stability of n-D discrete systems. IEEE Trans. Automat. Control 41: 756–761

    Article  MATH  MathSciNet  Google Scholar 

  • Xu L., Wu Q., Lin Z., Anazawa Y. (2004). A μ approach to roust staility analysis of n-D discrete-time systems. Multidimensional Systems and Signal Processing 15: 277–293

    Article  MATH  MathSciNet  Google Scholar 

  • Xu H., Xie L., Xu S., Zou Y. (2005). Positive real control for uncertain 2-D singular Roesser models. International Journal of Control, Automation, Systems 3: 1–7

    Google Scholar 

  • Xu H., Xu S. (2004). Robust stabilization for uncertain 2-D singular Roesser models. In Proceedings of the 8th Eighth International Conference on Control, Automation, Robotics and Visio, pp. 1476–1480, Kunming, China.

  • Xu L., Ying J., Lin Z., Saito O. (2003). Comments on Stability tests of N-dimensional discrete time systems using polynomial arrays. IEEE Trans. Circuits Syst. II 50: 666–669

    Article  Google Scholar 

  • Xu H., Zou Y., Xu S., Lam J. (2005). Bounded real lemma and robust H control of 2-D singular Roesser models. Systems & Control Letters 54: 339–346

    Article  MATH  MathSciNet  Google Scholar 

  • Ying J., Lin Z., Xu L. (2001). Some algebraic aspects of the strong stabilizability of time-delay linear systems. IEEE Trans. Automat. Control 46: 454–457

    Article  MATH  MathSciNet  Google Scholar 

  • Ying J., Xu L. (1997). Procedures for testing strong stabilizability of n-D systems. In Proceedings of the 36th IEEE Conference on Decision and Control 1: 337–338

    Article  Google Scholar 

  • Zou Y., Campbell S.L. (2000). The jump behavior and stability analysis for 2-D singular systems. Multidimensional Systems and Signal Processing 11: 321–338

    Article  MATH  MathSciNet  Google Scholar 

  • Zou Y., Wang W., Xu S., Xie, L. (2007). Analysis and control of the jump modes behavior of 2-D singular systems Part I: Structural stability. Systems & Control Letters 56: 34–39

    Article  MATH  MathSciNet  Google Scholar 

  • Zou Y., Wang W., Xu S., Xie L. (2007). Analysis and control of the jump modes behavior of 2-D singular systems Part II: Regular observer and compensator design. Systems & Control Letters 56: 40–47

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiling Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, Y., Xu, H. & Wang, W. Stability for two-dimensional singular discrete systems described by general model. Multidim Syst Sign Process 19, 219–229 (2008). https://doi.org/10.1007/s11045-007-0027-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-007-0027-y

Keywords