Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A coupled variational model for image denoising using a duality strategy and split Bregman

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

To reduce the staircase effect, high-order diffusion equations are used with high computational cost. Recently, a two-step method with two energy functions has been introduced to alleviate the staircase effect successfully. In the two-step method, firstly, the normal vector of noisy image is smoothed, and then the image is reconstructed from the smoothed normal field. In this paper, we propose a new image restoration model with only one energy function. When the alternating direction method is used, the estimation of the vector field and the reconstruction of the image are interlaced, which makes the new vector field can utilize sufficiently the information of the restored image, thus the constructed vector field is more accurate than that generated by the two-step method. To speed up the computation, the dual approach and split Bregman are employed in our numerical algorithm. The experimental results show that the new model is more effective to filter out the Gaussian noise than the state-of-the-art models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Afonso M., Bioucas-Dias J., Figueiredo M. (2011) An augmented lagrangian approach to the constrained optimization formulation of imaging inverse problems. IEEE Transactions on Image Processing 20(3): 681–695

    Article  MathSciNet  Google Scholar 

  • Bai J., Feng X. C. (2007) Fractional-order anisotropic diffusion for image denoising. IEEE Transactions on Image Processing 16(10): 2492–2502

    Article  MathSciNet  Google Scholar 

  • Cai J. F., Osher S., Shen Z. (2009a) Linearized Bregman iterations for compressed sensing. Mathematics of Computation 78: 1515–1536

    Article  MATH  MathSciNet  Google Scholar 

  • Cai J. F., Osher S., Shen Z. (2009b) Linearized Bregman iterations for frame-based image deblurring. SIAM Journal on Imaging Sciences 2(1): 226–252

    Article  MATH  MathSciNet  Google Scholar 

  • Chambolle A. (2004) An algorithm for total variation minimization and applications. Journal Mathematical Imaging Vision 20(1–2): 89–97

    MathSciNet  Google Scholar 

  • Chan T., Marquina A., Mulet P. (2000) High-order total variation-based image restoration. SIAM Journal on Scientific Computing 22(2): 503–516

    Article  MATH  MathSciNet  Google Scholar 

  • Chen Y., Ji Z. C., Hua C. J. (2008) Spatial adaptive Bayesian wavelet threshold exploiting scale and space consistency. Multidimensional Systems and Signal Processing 19(1): 157–170

    Article  MATH  MathSciNet  Google Scholar 

  • Daubechies I., Teschke G. (2005) Variational image restoration by means of wavelets: Simultaneous decomposition, deblurring, and denoising. Applied and Computational Harmonic Analysis 19(1): 1–16

    Article  MATH  MathSciNet  Google Scholar 

  • Didas S., Weickert J., Burgeth B. (2009) Properties of higher order nonlinear diffusion filtering. Journal Mathematical Imaging Vision 35(3): 208–226

    Article  MathSciNet  Google Scholar 

  • Dong F. F., Liu Z. (2009) A new gradient fidelity term for avoiding staircasing effect. Journal of Computer Science and Technology 24(6): 1162–1170

    Article  MathSciNet  Google Scholar 

  • Dong F. F., Liu Z., Kong D. X., Liu K. F. (2009) An improved LOT model for image restoration. Journal Mathematical Imaging Vision 34(1): 89–97

    Article  MathSciNet  Google Scholar 

  • Donoho D. (1995) Denoising by soft-thresholding. IEEE Transactions on Information Theory 41(3): 613–627

    Article  MATH  MathSciNet  Google Scholar 

  • Fadili M., Peyré G. (2011) Total variation projection with first order schemes. IEEE Transactions on Image Processing 20(3): 657–669

    Article  MathSciNet  Google Scholar 

  • Goldstein T., Osher S. (2009) The split Bregman method for L1 regularized problems. SIAM Journal on Imaging Sciences 2(2): 323–343

    Article  MATH  MathSciNet  Google Scholar 

  • Guidotti P., Lambers J. (2009) Two new nonlinear nonlocal diffusions for noise reduction. Journal Mathematical Imaging Vision 33(1): 25–37

    Article  MathSciNet  Google Scholar 

  • Hahn J., Tai X. C., Borok S., Bruckstein A. M. (2011) Orientation-matching minimization for image denoising and inpainting. International Journal of Computer Vision 92(3): 308–324

    Article  MATH  MathSciNet  Google Scholar 

  • Jiang L. L., Feng X. C., Yin H. Q. (2008) Variational image restoration and decomposition with curvelet shrinkage. Journal Mathematical Imaging Vision 30(2): 125–132

    Article  MathSciNet  Google Scholar 

  • Jiang L. L., Yin H. Q. (2012) Bregman iteration algorithm for sparse nonnegative matrix factorizations via alternating l 1-norm minimization. Multidimensional Systems and Signal Processing 23(3): 315–328

    Article  MathSciNet  Google Scholar 

  • Lysaker M., Lundervold A., Tai X. C. (2003) Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Transactions on Image Processing 12(12): 1579–1590

    Article  Google Scholar 

  • Lysaker M., Osher S., Tai X. C. (2004) Noise removal using smoothed normals and surface fitting. IEEE Transactions on Image Processing 13(10): 1345–1357

    Article  MathSciNet  Google Scholar 

  • Litvinov W., Rahman T., Tai X. C. (2011) A modified TV-Stokes model for image processing. SIAM Journal on Scientific Computing 33(4): 1574–1597

    Article  MATH  MathSciNet  Google Scholar 

  • Nikolova M., Ng M., Chi-Pan T. (2010) Fast nonconvex nonsmooth minimization methods for image restoration and reconstruction. IEEE Transactions on Image Processing 19(12): 3073–3088

    Article  MathSciNet  Google Scholar 

  • Osher S., Burger M., Goldfarb D., Xu J., Yin W. (2005) An iterative regularization method for total variation-based image restoration. Multiscale Modeling and Simulation 4(2): 460–489

    Article  MATH  MathSciNet  Google Scholar 

  • Osher S., Mao Y., Dong B., Yin W. (2010) Fast linearized Bregman iteration for compressive sensing and sparse denoising. Communications in Mathematical Sciences 8(1): 93–111

    Article  MATH  MathSciNet  Google Scholar 

  • Rudin L., Osher S., Fatemi E. (1992) Nonlinear total variation based noise removal algorithms. Physica D 60: 259–268

    Article  MATH  Google Scholar 

  • Setzer S. (2009) Split Bregman algorithm, Douglas–Rachford splitting and frame shrinkage. Scale Space and Variational Methods in Computer Vision 5567: 464–476

    Article  Google Scholar 

  • Tai X. C., Wu C. (2009) Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model. Scale Space and Variational Methods in Computer Vision 5567: 502–513

    Article  Google Scholar 

  • Wu C., Tai X. C. (2010) Augmented Lagrangian method, dual methods and split-Bregman iterations for ROF, vectorial TV and higher order models. SIAM Journal on Imaging Science 3(3): 300–339

    Article  MATH  MathSciNet  Google Scholar 

  • Yang Y., Pang Z., Shi B., Wang Z. (2011) Split Bregman method for the modified LOT model in image denoising. Applied Mathematics and Computation 217(12): 5392–5403

    Article  MATH  MathSciNet  Google Scholar 

  • Yin W. (2010) Analysis and generalizations of the linearized Bregman method. SIAM Journal on Imaging Sciences 3(4): 856–877

    Article  MATH  MathSciNet  Google Scholar 

  • You Y., Kaveh M. (2000) Fourth-order partial differential equations for noise removal. IEEE Transactions on Image Processing 9(10): 1723–1730

    Article  MATH  MathSciNet  Google Scholar 

  • Zhu L. X., Xia D. S. (2008) Staircase effect alleviation by coupling gradient fidelity term. Image Vision Computing 26(8): 1163–1170

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlou Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Feng, X. & Hao, Y. A coupled variational model for image denoising using a duality strategy and split Bregman. Multidim Syst Sign Process 25, 83–94 (2014). https://doi.org/10.1007/s11045-012-0190-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-012-0190-7

Keywords