Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robust \(H_{\infty }\) filtering for uncertain two-dimensional continuous systems with time-varying delays

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper deals with the problem of delay-dependent robust \(H_{\infty }\) filtering for uncertain two-dimensional (2-D) continuous systems described by Roesser state space model with time-varying delays, with the uncertain parameters assumed to be of polytopic type. A sufficient condition for \(H_{\infty }\) noise attenuation is derived in terms of linear matrix inequalities, so a robust \(H_{\infty }\) filter can be obtained by solving a convex optimization problem. Finally, some examples are provided to illustrate the effectiveness of the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Agathoklis, P. (1988). The Lyapunov equation for n-dimensional discrete systems. IEEE Transactions on Circuits and Systems, 35, 448–451.

    Article  MathSciNet  Google Scholar 

  • Anderson, B. D. O., & Moore, J. B. (1979). Optimal filtering. Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  • Bachelier, O., Paszke, W., & Mehdi, D. (2008). On the Kalman-Yakubovich-Popov lemma and the multidimensional models. Multidimensional Systems and Signal Processing, 19, 425–447.

    Article  MathSciNet  MATH  Google Scholar 

  • Benzaouia, A., Benhayoun, M., & Tadeo, F. (2011). State feedback stabilization of 2-D continuous systems with delays. International Journal of Innovative Computing, Information and Control, 7(2), 977–988.

    Google Scholar 

  • Chen, S. F., & Fong, I. K. (2006). Robust filtering for 2-D state-delayed systems with NFT uncertainties. IEEE Transactions on Signal Processing, 54, 274–285.

    Article  Google Scholar 

  • Chen, S. F., & Fong, I. K. (2007). Delay-dependent robust \(H_{\infty }\) filtering for uncertain 2-D state-delayed systems. Signal Processing, 87, 2659–2672.

    Article  MATH  Google Scholar 

  • Chen, S. F. (2010). Delay-dependent stability for 2D systems with time-varying delay subject to state saturation in the Roesser model. Applied Mathematics and Computation, 216, 2613–2622.

    Article  MathSciNet  MATH  Google Scholar 

  • Dymkou, S., Rogers, E., Dymkov, M., & Galkowski, K. (2008). Constrained optimal control theory for differential linear repetitive processes. SIAM Journal of Control and Optimization, 47(1), 396–420.

    Article  MathSciNet  MATH  Google Scholar 

  • El-Kasri, C., Hmamed, A., Alvarez, T., & Tadeo, F. (2012). Robust \(H_{\infty }\) filtering of 2D Roesser discrete systems: A polynomial approach. Mathematical Problems in Engineering, 2012, 1–15.

    Article  MathSciNet  Google Scholar 

  • El-Kasri, C., Hmamed, A., Alvarez, T., & Tadeo, F. (2012b). Uncertain 2D continuous systems with state delay: Filter design using an \(H_{\infty }\) polynomial approach. International Journal of Computer Applications, 44(18), 13–21.

    Article  Google Scholar 

  • Feng, G. (2005). Robust filtering design for piecewise discrete time linear systems. IEEE Transactions on Signal Processing, 53(2), 599–605.

    Article  MathSciNet  Google Scholar 

  • Feng, Z.-Y., Wu, Q., & Xu, L. (2012). \(H_{\infty }\) control of linear multidimensional discrete systems. Multidimensional Systems and Signal Processing, 23(3), 381–411.

    Article  MathSciNet  Google Scholar 

  • Gao, H., & Li, X. (2011). \(H_{\infty }\) filtering for discrete-time state-delayed systems With finite frequency specifications. IEEE Transactions on Automatic Control, 56(12), 2935–2941.

    Article  Google Scholar 

  • Gao, C. Y., Duan, G. R., & Meng, X. Y. (2008). Robust \(H_{\infty }\) filter design for 2D discrete systems in Roesser model. International Journal of Automation and Computing, 5(4), 413–418.

    Article  Google Scholar 

  • Gao, H., & Wang, C. (2004). A delay dependent approach to robust \(H_{\infty }\) filtering for uncertain discrete-time state-delayed system. IEEE Transactions on Signal Processing, 52(6), 1631–1640.

    Article  MathSciNet  Google Scholar 

  • Gao, H., Lam, J., Xie, L., & Wang, C. (2005). New approach to mixed \(H_{2}/H_{\infty }\) filtering for polytopic discrete-time systems. IEEE Transactions on Signal Processing, 53, 3183–3192.

    Article  MathSciNet  Google Scholar 

  • Geromel, J. C., de Oliveira, M. C., & Bernussou, J. (2002). Robust filtering of discrete-time linear systems with parameter dependent Lyapunov functions. SIAM Journal of Control and Optimization, 41, 700–711.

    Article  MATH  Google Scholar 

  • Ghamgui, M., Yeganetar, N., Bachelier, O., & Mehdi, D. (2012). Stability and stabilization of 2D continuous time varying delay systems. International Journal of Sciences and Techniques of Automatic Control & Computer Engineering, 6(1), 1734–1745.

    Google Scholar 

  • He, Y., Wang, Q., & Lin, C. (2006). An improved \(H_{\infty }\) filter design for systems with time-varying interval delay. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 53(11), 1235–1239.

    Google Scholar 

  • Hmamed, A., El-Kasri, C., Tissir, E. H., Alvarez, T., & Tadeo, F. (2013). Robust \(H_{\infty }\) filtering for uncertain 2-D continuous systems with delays. International Journal of Innovative Computing, Information and Control, 9(5), 2167–2183.

    Google Scholar 

  • Idczak, D., & Majewski, M. (2012). Existence of optimal solutions of two-directionally continuous linear repetitive processes. Multidimensional Systems and Signal Processing, 23(1–2), 155–162.

    Article  MathSciNet  MATH  Google Scholar 

  • Klamka, J. (1997a). Controllability of infinite-dimensional 2-D linear systems. Advances in Systems Science and Applications, 1(1), 537–543.

    MathSciNet  Google Scholar 

  • Klamka, J. (1997b). Controllability of nonlinear 2-D systems. Nonlinear Analysis, Theory, Methods and Applications, 30(5), 2963–2968.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, X., & Gao, H. (2011). A delay-dependent approach to robust generalized \(H_{2}\) filtering for uncertain continuous-time systems with interval delay. Signal Processing, 91, 2371–2378.

    Article  MATH  Google Scholar 

  • Li, X., Gao, H., & Wang, C. (2012). Generalized Kalman-Yakubovich-Popov lemma for 2-D FM LSS model. IEEE Transactions on Automatic Control, 57(12), 3090–3103.

    Article  MathSciNet  Google Scholar 

  • Li, X., & Gao, H. (2012). Robust finite frequency \(H_{\infty }\) filtering for uncertain 2-D Roesser systems. Automatica, 48, 1163–1170.

    Article  MATH  Google Scholar 

  • Lin, Z. (1998). Feedback stabilizability of MIMO \(n\)-D linear systems. Multidimensional Systems and Signal Processing, 9, 149–172.

    Article  MathSciNet  MATH  Google Scholar 

  • Ming, X. J., & Li, Y. (2008). \(H_{\infty }\) control for 2-D discrete state delayed systems in the second FM model. Acta Automatica Sinica, 34(7), 809–813.

    MathSciNet  Google Scholar 

  • Palhares, R. M., Souza, C. E. D., & Peres, P. L. D. (2001). Robust \(H_{\infty }\) filtering for uncertain discrete-time state-delayed systems. IEEE Transactions on Signal Processing, 49, 1696–1703.

    Article  MathSciNet  Google Scholar 

  • Paszke, W., Lam, J., Galkowski, K., Xu, S., & Lin, Z. (2004). Robust stability and stabilization of 2-D discrete state-delayed systems. Systems & Control Letters, 51, 277–291.

    Article  MathSciNet  MATH  Google Scholar 

  • Sun, K., Chen, J., Liu, G. P., & Rees, D. (2009). Delay-dependent Robust \(H_{\infty }\) filter design for uncertain linear systems with time-varying delay. Circuits, Systems & Signal Processing, 28, 763–779.

    Article  MathSciNet  MATH  Google Scholar 

  • Sun, K., & Packard, A. (2005). Robust \(H_{2}\) and \(H_{\infty }\) filters for uncertain LFT systems. IEEE Transactions on Automatic Control, 50, 715–720.

    Article  MathSciNet  Google Scholar 

  • Xu, H., & Zou, Y. (2010). Robust \(H_{\infty }\) filtering for uncertain two-dimensional discrete systems with state-varying delays. International Journal of Control, Automation, and Systems, 8(4), 720–726.

    Article  MathSciNet  Google Scholar 

  • Xu, S., Lam, J., Zou, Y., Lin, Z., & Paszke, W. (2005). Robust \(H_{\infty }\) filtering for uncertain 2-D continuous systems. IEEE Transactions on Signal Processing, 53, 1731–1738.

    Article  MathSciNet  Google Scholar 

  • Yao, J., Wang, W. Q., & Zou, Y. (2013). The delay-range-dependent robust stability analysis for 2-D state-delayed systems with uncertainty. Multidimensional Systems and Signal Processing, 24(1), 87–103.

    Article  Google Scholar 

  • Yang, R., Xie, L., & Zhang, C. (2008). Generalized two-dimensional Kalman-Yakubovich-Popov lemma for discrete Roesser model. IEEE Transactions on Circuits and Systems I, 55(10), 3223–3233.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Tadeo.

Additional information

This work is funded by AECI AP/034911/11 and MiCInn DPI2010-21589-c05.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Kasri, C., Hmamed, A., Tissir, E.H. et al. Robust \(H_{\infty }\) filtering for uncertain two-dimensional continuous systems with time-varying delays. Multidim Syst Sign Process 24, 685–706 (2013). https://doi.org/10.1007/s11045-013-0242-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-013-0242-7

Keywords