Abstract
A two-dimensional (2D) high-order Wigner distribution (HO-WD) is proposed for parameter estimation of 2D polynomial phase signals (PPSs). The genetic algorithm is employed for maximization of the 2D HO-WD. In comparison to the 2D cubic phase function and classical Francos and Friedlander approach, the 2D HO-WD reduces error propagation effect which leads to lower mean squared error in estimation of signal parameters. The proposed technique is generalized for the 2D higher-order PPS.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Amar, A., Leshem, A., & van der Veen, A.-J. (2010). A low complexity blind estimator of narrowband polynomial phase signals. IEEE Transactions on Signal Processing, 58(9), 4674–4683.
Barbarossa, S., Di Lorenzo, P., & Vecchiarelli, P. (2014). Parameter estimation of 2D multi-component polynomial phase signals: An application to SAR imaging of moving targets. IEEE Transactions on Signal Processing, 62(17), 4375–4389.
Boashash, B. (2015). Time-frequency signal analysis and processing: A comprehensive reference. Boca Raton: Academic Press.
Cristóbal, G., & Hormigo, J. (1999). Texture segmentation through eigen-analysis of the pseudo-Wigner distribution. Pattern Recognition Letters, 20, 337–345.
Djurović, I., & Stanković, LJ. (2004). Nonparametric algorithm for the local frequency estimation of multicomponent signals. IEEE Transactions on Image Processing, 13(4), 467–474.
Djurović, I., & Simeunović, M. (2015a). Combined HO-CPF and HO-WD PPS estimator. Signal, Image and Video Processing, 9(6), 1395–1400.
Djurović, I., & Simeunović, M. (2015b). Parameter estimation of non-uniform sampled polynomial-phase signals using the HOCPF-WD. Signal Processing, 106(1), 253–258.
Djurović, I., Simeunović, M., Djukanović, S., & Wang, P. (2012a). A hybrid CPF-HAF estimation of polynomial-phase signals: Detailed statistical analysis. IEEE Transactions on Signal Processing, 60(10), 5010–5023.
Djurović, I., Simeunović, M., & Lutovac, B. (2012b). Are genetic algorithms useful for the parameter estimation of FM signals? Digital Signal Processing, 22(6), 1137–1144.
Djurović, I., Wang, P., & Ioana, C. (2010a). Parameter estimation of 2-D cubic phase signal using cubic phase function with genetic algorithm. Signal Processing, 90(9), 2698–2707.
Djurović, I., Wang, P., Ioana, C., & Simeunović, M. (2010b). Cubic phase function for two-dimensional polynomial-phase signals. In Proceedings of 2010 European signal processing conference (EUSIPCO’2010), August 2010 (pp. 23–27).
Francos, J. M., & Friedlander, B. (1998). Two-dimensional polynomial phase signals: Parameter estimation and bounds. Multidimensional Systems and Signal Processing, 9(2), 173–205.
Francos, J. M., & Friedlander, B. (1999). Optimal parameter selection in the phase differencing algorithm for 2-D phase estimation. IEEE Transactions on Signal Processing, 47(1), 273–279.
Friedlander, B., & Francos, J. M. (1996). An estimation algorithm for 2-D polynomial phase signals. IEEE Transactions on Image Processing, 5(6), 1084–1087.
Hormigo, J., & Cristóbal, G. (2004). Image segmentation using the Wigner–Ville distribution. Advances in Imaging and Electron Physics, 131, 65–80.
Ivanović, V. N., & Jovanovski, S. (2009). Signal adaptive system for space/spatial-frequency analysis. EURASIP Journal on Advances in Signal Processing, 2009, 1–15.
Ivanović, V. N., Radović, N., & Jovanovski, S. (2010). Real-time design of space/spatial-frequency optimal filter. Electronics Letters, 46(25), 1696–1697.
O’Shea, P. (2002). A new technique for instantaneous frequency rate estimation. IEEE Signal Processing Letters, 9(8), 251–252.
O’Shea, P. (2004). A fast algorithm for estimating the parameters of a quadratic FM signal. IEEE Transactions on Signal Processing, 52(2), 385–393.
Perry, R., DiPietro, R., & Fante, R. (1999). SAR imaging of moving targets. IEEE Transactions on Aerospace and Electronic Systems, 35(1), 188–200.
Porat, B. (1994). Digital processing of random signals: Theory and methods. Englewood Cliffs, NJ: Prentice-Hall.
Porat, B., & Friedlander, B. (1996). Asymptotic statistical analysis of the high-order ambiguity function for parameter estimation of polynomial-phase signals. IEEE Transactions on Information Theory, 42(3), 995–1001.
Raković, P., Simeunović, M., & Djurović, I. (2017). On improvement of joint estimation of DOA and PPS coefficients impinging on ULA. Signal Processing, 134, 209–213.
Reid, D. C., Zoubir, A. M., & Boashash, B. (1997). Aircraft flight parameter estimation based on passive acoustic techniques using the polynomial Wigner–Ville distribution. The Journal of the Acoustical Society of America, 102(1), 207–223.
Sekhar, S. C., & Sreenivas, T. V. (2006). Signal-to-noise ratio estimation using higher-order moments. Signal Processing, 86(4), 716–732.
Simeunović, M., & Djurović, I. (2016). Parameter estimation of multicomponent 2D polynomial-phase signals using the 2D PHAF-based approach. IEEE Transactions on Signal Processing, 64(3), 771–782.
Stanković, LJ. (1997). Local polynomial Wigner distribution. Signal Processing, 59(1), 123–128.
Stanković, LJ., Djurović, I., Stanković, S., Simeunović, M., Djukanović, S., & Daković, M. (2014). Instantaneous frequency in time-frequency analysis: Enhanced concepts and performance of estimation algorithms. Digital Signal Processing, 35, 1–13.
Stanković, LJ., Stanković, S., & Djurović, I. (2008). Space/spatial-frequency analysis based filtering. IEEE Transactions on Signal Processing, 48(8), 2343–2352.
Stanković, S., Stanković, LJ., & Uskoković, Z. (1995). On the local frequency, group shift and cross terms in some multidimensional time-frequency distributions: A method for multidimensional time-frequency analysis. IEEE Transactions on Signal Processing, 43(7), 1719–1725.
Suzuki, H., & Kobayashi, F. (1992). A method of two-dimensional spectral analysis using the Wigner distribution. Electronics and Communications in Japan (Part III: Fundamental Electronic Science), 75(1), 101–110.
Tang, K. S., Man, K. F., Kwong, S., & He, Q. (1996). Genetic algorithms and their applications. Signal Processing Magazine, IEEE, 13(6), 22–37.
Zhu, Y. M., Goutte, R., & Peyrin, F. (1990). The use of a two-dimensional Hilbert transform for Wigner analysis of 2-dimensional real signals. Signal Processing, 19(3), 205–220.
Zhu, Y. M., Peyrin, F., & Goutte, R. (1987). Transformation de Wigner–Ville: Description d’un nouvel outil de traitement du signal et des images. Annales des Tlcommunications, 42(3), 105–118.
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
Consider signal (1). The 2D HO-WD of (1) can be written as
Since noise is zero-mean Gaussian with variance \(\sigma ^{2}\), it follows E\(\{f\left( n+\tau _{n},m+\tau _{m}\right) \)\(\nu ^{*}\left( n-\tau _{n},m-\tau _{m}\right) \}=0\), E\(\{\nu \left( n+\tau _{n},m+\tau _{m}\right) \)\(f^{*}\left( n-\tau _{n},m-\tau _{m}\right) \}=0\) and E\(\{\nu \left( n+\tau _{n},m+\tau _{m}\right) \)\(\nu ^{*}\left( n-\tau _{n},m-\tau _{m}\right) \}=\sigma ^{2}\delta (\tau _{n},\tau _{m})\). In an ideal case, the 2D HO-WD peaks for \(\alpha _{30}=a_{30},\alpha _{21}=a_{21},\alpha _{12} =a_{12},\alpha _{03}=a_{03}\), \(\omega _{n}\left( n,m\right) =a_{10} +2a_{20}n+a_{11}m+3a_{30}n^{2}+a_{12}m^{2}+a_{21}4nm\), \(\omega _{m}\left( n,m\right) =a_{01}+2a_{02}m+a_{11}n+3a_{03}m^{2}+a_{21}n^{2}+a_{12}4nm\). Since the objective function is the sum of three 2D HO-WDs, calculated at (0, 0), (\(n_{0},0\)) and (0,\(m_{0}\)), the mathematical expectation of (14) for position of the HO-WD maximum equals
Rights and permissions
About this article
Cite this article
Simeunović, M., Djurović, I. & Pelinković, A. Parametric estimation of 2D cubic phase signals using high-order Wigner distribution with genetic algorithm. Multidim Syst Sign Process 30, 451–464 (2019). https://doi.org/10.1007/s11045-018-0564-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11045-018-0564-6