Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Content-based blur image retrieval using quaternion approach and frequency adder LBP

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

The paper presents a content based image retrieval scheme based on feature extraction and weighing. Features are extracted using frequency adder based local binary pattern and blur detection metric which are then optimally combined using a weighing scheme. Simulations are performed on modified Wang and KTH-TIPS databases, which include images from four different classes of blur respectively. Comparison of simulation results with the state-of-the-art techniques show better retrieval precision and recall values for proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Alsmadi, M. K. (2017). An efficient similarity measure for content based image retrieval using memetic algorithm. Egyptian Journal of Basic and Applied Sciences, 4(2), 112–122.

    Article  Google Scholar 

  • Alzubi, A., Amira, A., & Ramzan, N. (2017). Content-based image retrieval with compact deep convolutional features. Neurocomputing, 249, 95–105.

    Article  Google Scholar 

  • Boomilingam, T., & Subramaniam, M. (2017). An efficient retrieval using edge GLCM and association rule mining guided IPSO based artificial neural network. Multimedia Tools and Applications, 76(20), 21729–21747.

    Article  Google Scholar 

  • Corel photo collection color image database. http://wang.ist.psu.edu/docs/realted/.

  • Denis, P., Carre, P., & Fernandez-Maloigne, C. (2007). Spatial and spectral quaternionic approaches for colour images. Computer Vision and Image Understanding, 107(1–2), 74–87.

    Article  Google Scholar 

  • Dubey, S. R., Singh, S. K., & Singh, R. K. (2016). Multichannel decoded local binary patterns for content-based image retrieval. IEEE Transactions on Image Processing, 25(9), 4018–4032.

    Article  MathSciNet  MATH  Google Scholar 

  • Dubey, S. R., Singh, S. K., & Singh, R. K. (2017). Local SVD based NIR face retrieval. Journal of Visual Communication and Image Representation, 49, 141–152.

    Article  Google Scholar 

  • Ell, T. A., & Sangwine, S. J. (2007). Hypercomplex Fourier transforms of color images. IEEE Transactions on Image Processing, 16(1), 22–35.

    Article  MathSciNet  MATH  Google Scholar 

  • Fadaei, S., Amirfattahi, R., & Ahmadzadeh, M. R. (2017). New content-based image retrieval system based on optimised integration of DCD, wavelet and curvelet features. IET Image Processing, 11(2), 89–98.

    Article  Google Scholar 

  • Giveki, D., Soltanshahi, M. A., & Montazer, G. A. (2017). A new image feature descriptor for content based image retrieval using scale invariant feature transform and local derivative pattern. International Journal for Light and Electron Optics, 131, 242–254.

    Article  Google Scholar 

  • Goncalves, F. M. F., Guilherme, I. R., & Pedronette, D. C. G. (2017). Semantic guided interactive image retrieval for plant identification. Expert Systems with Applications, 91, 12–26.

    Article  Google Scholar 

  • Hamilton, W. R. (1866). Elements of quaternions. Longmans: Green, & Company.

    Google Scholar 

  • Karakasis, E. G., Papakostas, G. G., Koulouriotis, D. E., & Tourassis, V. D. (2014). A unified methodology for computing accurate quaternion color moments and moment invariants. IEEE Transactions on Image Processing, 23(2), 596–611.

    Article  MathSciNet  MATH  Google Scholar 

  • Khokher, A., & Talwar, R. (2017). A fast and effective image retrieval scheme using color, texture, and shape-based histograms. Multimedia Tools and Applications, 76(20), 21787–21809.

    Article  Google Scholar 

  • KTH-TIPS texture image database. http://www.nada.kth.se/cvap/databases/kth-tips/index.html.

  • Kundu, M. K., Chowdhury, M., & Bulo, S. R. (2015). A graph-based relevance feedback mechanism in content-based image retrieval. Knowledge-Based Systems, 73, 254–264.

    Article  Google Scholar 

  • Lan, R., & Zhou, Y. (2017). Medical image retrieval via histogram of compressed scattering coefficients. IEEE Journal of Biomedical and Health Informatics, 21(5), 1338–1346.

    Article  MathSciNet  Google Scholar 

  • Lan, R., Zhou, Y., & Tang, Y. Y. (2017). Quaternionic weber local descriptor of color images. IEEE Transactions on Circuits and Systems for Video Technology, 27(2), 261–274.

    Article  Google Scholar 

  • Liu, P., Guo, J. M., Wu, C. Y., & Cai, D. (2017). Fusion of deep learning and compressed domain features for content based image retrieval. IEEE Transactions on Image Processing, 99, 1–1.

    MathSciNet  MATH  Google Scholar 

  • Moxey, C. E., Sangwine, S. J., & Ell, T. A. (2003). Hypercomplex correlation techniques for vector images. IEEE Transactions on Signal Processing, 51(7), 1941–1953.

    Article  MathSciNet  MATH  Google Scholar 

  • Narvekar, N. D., & Karam, L. J. (2011). A no-reference image blur metric based on the cumulative probability of blur detection (CPBD). IEEE Transactions on Image Processing, 20(9), 2678–2683.

    Article  MathSciNet  MATH  Google Scholar 

  • Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 971–987.

    Article  MATH  Google Scholar 

  • Paul, S., & Das, S. (2015). Simultaneous feature selection and weighting—An evolutionary multi-objective optimization approach. Pattern Recognition Letters, 65, 51–59.

    Article  Google Scholar 

  • Paul, T. K., & Ogunfunmi, T. (2015). A kernel adaptive algorithm for quaternion-valued inputs. IEEE Transactions on Neural Networks and Learning Systems, 26(10), 2422–2439.

    Article  MathSciNet  Google Scholar 

  • Pavithra, L. K., & Sharmila, T. S. (2017). An efficient framework for image retrieval using color, texture and edge features. Computers and Electrical Engineering, 70, 1–14.

    Google Scholar 

  • Pei, S. C., & Cheng, C. M. (1999). Color image processing by using binary quaternion-moment-preserving thresholding technique. IEEE Transactions on Image Processing, 8(5), 614–628.

    Article  Google Scholar 

  • Sangwine, S. J. (1996). Fourier transforms of colour images using quaternion or hypercomplex, numbers. Electronics Letters, 32(21), 1979–1980.

    Article  Google Scholar 

  • Shrivastava, N., & Tyagi, V. (2016). An integrated approach for image retrieval using local binary pattern. Multimedia Tools and Applications, 75(11), 6569–6583.

    Article  Google Scholar 

  • Srivastava, P., & Khare, A. (2017). Utilizing multiscale local binary pattern for content-based image retrieval. Multimedia Tools and Applications, 77, 1–27.

    Google Scholar 

  • Srivastava, P., & Khare, A. (2017). Integration of wavelet transform, Local Binary Patterns and moments for content-based image retrieval. Journal of Visual Communication and Image Representation, 42, 78–103.

    Article  Google Scholar 

  • Tang, X., Jiao, L., & Emery, W. J. (2017). SAR image content retrieval based on fuzzy similarity and relevance feedback. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(5), 1824–1842.

    Article  Google Scholar 

  • Wu, J., Feng, L., Liu, S., & Sun, M. (2017). Image retrieval framework based on texton uniform descriptor and modified manifold ranking. Journal of Visual Communication and Image Representation, 49, 78–88.

    Article  Google Scholar 

  • Zhang, D., Tang, J., Jin, G., Zhang, Y., & Tian, Q. (2017). Region similarity arrangement for large-scale image retrieval. Neurocomputing, 272, 461–470.

    Article  Google Scholar 

  • Zhu, H., & Xie, Q. (2018). Content-based image retrieval using student’s t-mixture model and constrained multiview nonnegative matrix factorization. Multimedia Tools and Applications, 77(11), 14207–14239.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Ghafoor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukhia, K.N., Riaz, M.M. & Ghafoor, A. Content-based blur image retrieval using quaternion approach and frequency adder LBP. Multidim Syst Sign Process 30, 2167–2183 (2019). https://doi.org/10.1007/s11045-019-00643-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-019-00643-w

Keywords