Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Performance analysis and DOA estimation method over acoustic vector sensor array in the presence of polarity inconsistency

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This paper investigates the direction of arrival (DOA) estimation performance in the presence of polarity inconsistency in uniform acoustic vector sensor (AVS) linear array. We analyze the influence of polarity bias on beampattern directivity of the AVS array. The analysis results show that the polarity bias leads to asymptotically biased estimation. Then, the analytical expression for the asymptotic bias based on classical beamforming is derived in the presence of polarity error. Moreover, to improve the DOA estimation performance in the presence of polarity inconsistency, a polarity calibration method is proposed. Numerical simulations reveal the effectiveness and superiority of the proposed calibration method when the polarity error satisfies with the uniform distribution and the normal distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Aich, A., & Palanisamy, P. (2017). On-grid DOA estimation method using orthogonal matching pursuit. In IEEE International conference on signal processing and communication, pp. 483–487.

  • Aktas, M., & Ozkan, H. (2018). Acoustic direction finding using single acoustic vector sensor under high reverberation. Digital Signal Processing, 75, 56–70.

    Article  MathSciNet  Google Scholar 

  • Awad, M. K., & Wong, K. T. (2012). Recursive least-squares source tracking using one acoustic vector sensor. IEEE Transactions on Aerospace and Electronic Systems, 48(4), 3073–3083.

    Article  Google Scholar 

  • Dassios, I., & Baleanu, D. (2018). Optimal solutions for singular linear systems of caputo fractional differential equations. Mathematical Methods in the Applied Sciences. https://doi.org/10.1002/mma.5410.

  • Dassios, I. K. (2019). Analytic loss minimization: Theoretical framework of a second order optimization method. Symmetry, 11(2), 136.

    Article  Google Scholar 

  • Dassios, I., Fountoulakis, K., & Gondzio, J. (2015). A preconditioner for a primal-dual newton conjugate gradient method for compressed sensing problems. SIAM Journal on Scientific Computing, 37(6), A2783–A2812.

    Article  MathSciNet  Google Scholar 

  • De-sen, S. J. Y. (2010). Localization of underwater noise sources based on broadband MVDR focused beamforming with vector sensor array processing. Signal Processing, 5, 009.

    Google Scholar 

  • Fauziya, F., Lall, B., & Agrawal, M. (2018). Impact of vector sensor on underwater acoustic communications system. IET Radar, Sonar and Navigation, 12(12), 1500–1508.

    Article  Google Scholar 

  • Guo, L., Han, X., Yin, J., & Yu, X. (2018). Underwater acoustic communication by a single-vector sensor: Performance comparison using three different algorithms. Shock and Vibration. https://doi.org/10.1155/2018/2510378.

  • Han, K., & Nehorai, A. (2014). Nested vector-sensor array processing via tensor modeling. IEEE Transactions on Signal Processing, 62(10), 2542–2553.

    Article  MathSciNet  Google Scholar 

  • Hawkes, M., & Nehorai, A. (1998). Acoustic vector-sensor beamforming and capon direction estimation. IEEE Transactions on Signal Processing, 46(9), 2291–2304.

    Article  Google Scholar 

  • Hawkes, M., & Nehorai, A. (2001). Acoustic vector-sensor correlations in ambient noise. IEEE Journal of Oceanic Engineering, 26(3), 337–347.

    Article  Google Scholar 

  • Jin, H., Jiang, S., Wang, J., & Zhong, L. (2010). Particle-velocity-field difference smoothing for coherent source localization in spatially nonuniform noise. IEEE Journal of Oceanic Engineering, 35(1), 113–119.

    Article  Google Scholar 

  • Kitchens, J. P. (2008). Acoustic vector-sensor array performance. Ph.D. dissertation, Massachusetts Institute of Technology.

  • Krishnaprasad, N. (2016). Acoustic vector sensor based source localization. Ph.D. dissertation, Delft University of Technology.

  • Le Bihan, N., Miron, S., & Mars, J. I. (2007). Music algorithm for vector-sensors array using biquaternions. IEEE Transactions on Signal Processing, 55(9), 4523–4533.

    Article  MathSciNet  Google Scholar 

  • Ma, L., Gulliver, T. A., Zhao, A., Ge, C., & Bi, X. (2019). Underwater broadband source detection using an acoustic vector sensor with an adaptive passive matched filter. Applied Acoustics, 148, 162–174.

    Article  Google Scholar 

  • Malioutov, D., Cetin, M., & Willsky, A. S. (2005). A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Transactions on Signal Processing, 53(8), 3010–3022.

    Article  MathSciNet  Google Scholar 

  • Miron, S., Le Bihan, N., & Mars, J. I. (2006). Quaternion-music for vector-sensor array processing. IEEE Transactions on Signal Processing, 54(4), 1218–1229.

    Article  Google Scholar 

  • Najeem, S., Kiran, K., Malarkodi, A., & Latha, G. (2017). Open lake experiment for direction of arrival estimation using acoustic vector sensor array. Applied Acoustics, 119, 94–100.

    Article  Google Scholar 

  • Nehorai, A., & Paldi, E. (1994). Acoustic vector-sensor array processing. IEEE Transactions on Signal Processing, 42(9), 2481–2491.

    Article  Google Scholar 

  • Ramamohan, K. N., Comesaña, D. F., & Leus, G. (2018). Uniaxial acoustic vector sensors for direction-of-arrival estimation. Journal of Sound and Vibration, 437, 276–291.

    Article  Google Scholar 

  • Santos, P., Rodriguez, O., Felisberto, P., & Jesus, S. (2010). Seabed geoacoustic characterization with a vector sensor array. The Journal of the Acoustical Society of America, 128(5), 2652–2663.

    Article  Google Scholar 

  • Shi, S., Li, Y., Zhu, Z., & Shi, J. (2019). Real-valued robust doa estimation method for uniform circular acoustic vector sensor arrays based on worst-case performance optimization. Applied Acoustics, 148, 495–502.

    Article  Google Scholar 

  • Tao, J., Chang, W., & Shi, Y. (2008). Direction-finding of coherent sources via ‘particle-velocity-field smoothing. IET Radar, Sonar and Navigation, 2(2), 127–134.

    Article  Google Scholar 

  • Tichavsky, P., Wong, K. T., & Zoltowski, M. D. (2001). Near-field/far-field azimuth and elevation angle estimation using a single vector hydrophone. IEEE Transactions on Signal Processing, 49(11), 2498–2510.

    Article  Google Scholar 

  • Tropp, J. A., Gilbert, A. C., & Strauss, M. J. (2006). Algorithms for simultaneous sparse approximation. Part i: Greedy pursuit. Signal Processing, 86(3), 572–588.

    Article  Google Scholar 

  • Xiaofei, Z., Ming, Z., Han, C., & Jianfeng, L. (2014). Two-dimensional doa estimation for acoustic vector-sensor array using a successive music. Multidimensional Systems and Signal Processing, 25(3), 583–600.

    Article  MathSciNet  Google Scholar 

  • Zhang, L., Wu, D., Han, X., & Zhu, Z. (2016). Feature extraction of underwater target signal using mel frequency cepstrum coefficients based on acoustic vector sensor. Journal of Sensors. https://doi.org/10.1155/2016/7864213.

  • Zhang, Q., Abeida, H., Xue, M., Rowe, W., & Li, J. (2012). Fast implementation of sparse iterative covariance-based estimation for source localization. The Journal of the Acoustical Society of America, 131(2), 1249–1259.

    Article  Google Scholar 

  • Zhang, Z., He, J., Shu, T., & Yu, W. (2018). Successive method for angle-polarization estimation with vector-sensor array. IEEE Sensors Letters, 2(1), 1–4.

    Article  Google Scholar 

  • Zhao, A., Ma, L., Hui, J., Zeng, C., & Bi, X. (2018). Open-lake experimental investigation of azimuth angle estimation using a single acoustic vector sensor. Journal of Sensors. https://doi.org/10.1155/2018/4324902.

  • Zoltowski, M. D., & Wong, K. T. (2000). Esprit-based 2-d direction finding with a sparse uniform array of electromagnetic vector sensors. IEEE Transactions on Signal Processing, 48(8), 2195–2204.

    Article  Google Scholar 

  • Zou, Y. X., Li, B., & Ritz, C. H. (2016). Multi-source doa estimation using an acoustic vector sensor array under a spatial sparse representation framework. Circuits Systems and Signal Processing, 35(3), 993–1020.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China under Grant 2016YFC1400203, National Natural Science Foundation of China under Grants 61531015, 61501374, 61771394 and Natural Science Basic Research Plan in Shaanxi Province of China under Grant 2018JM6042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wentao Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Here, we derive the bias expression of (27) in Sect. 4. By taking the first and second order derivatives of \(f(\theta )\) with respect to \(\theta \), we obtain

$$\begin{aligned} \frac{{\partial f(\theta )}}{{\partial \theta }}= & {} \frac{{\partial {{{\varvec{ A}}}^H}(\theta )}}{{\partial \theta }}{\hat{{\varvec{ R}}}}{{\varvec{ A}}}(\theta ) + {{{\varvec{ A}}}^H}(\theta ){\hat{{\varvec{ R}}}}\frac{{\partial {{\varvec{ A}}}(\theta )}}{{\partial \theta }}, \end{aligned}$$
(68)
$$\begin{aligned} \frac{{{\partial ^2}f(\theta )}}{{\partial {\theta ^2}}}= & {} \frac{{{\partial ^2}{{{\varvec{ A}}}^H}(\theta )}}{{\partial {\theta ^2}}}{\hat{{\varvec{ R}}}}{{\varvec{ A}}}(\theta ) + 2\frac{{\partial {{{\varvec{ A}}}^H}(\theta )}}{{\partial \theta }}{\hat{{\varvec{ R}}}}\frac{{\partial {{\varvec{ A}}}(\theta )}}{{\partial \theta }} + {{{\varvec{ A}}}^H}(\theta ){\hat{{\varvec{ R}}}}\frac{{{\partial ^2}{{\varvec{ A}}}(\theta )}}{{\partial {\theta ^2}}}. \end{aligned}$$
(69)

By substituting (68) and (69) for (26), we can get

$$\begin{aligned} \begin{aligned} {\hat{b}}(\theta )&= - \frac{\dfrac{{\partial {{{\varvec{ A}}}^H}(\theta )}}{{\partial \theta }}{\hat{{\varvec{ R}}}}{{\varvec{ A}}}(\theta ) + {{{\varvec{ A}}}^H}(\theta ){\hat{{\varvec{ R}}}}\dfrac{{\partial {{\varvec{ A}}}(\theta )}}{\partial \theta }}{\dfrac{{\partial ^2}{{{\varvec{ A}}}^H}(\theta )}{\partial {\theta ^2}}{\hat{{\varvec{ R}}}}{{\varvec{ A}}}(\theta ) + 2\dfrac{\partial {{{\varvec{ A}}}^H}(\theta )}{\partial \theta }{\hat{{\varvec{ R}}}}\dfrac{\partial {{\varvec{ A}}}(\theta )}{{\partial \theta }} + {{{\varvec{ A}}}^H}(\theta ){\hat{{\varvec{ R}}}}\dfrac{{\partial ^2}{{\varvec{ A}}}(\theta )}{\partial {\theta ^2}}}, \end{aligned} \end{aligned}$$
(70)

where \( {\hat{{\varvec{ R}}}} = \sigma _s^2{{\varvec{ a}}}(\theta ,{{\varvec{\beta }}} ){{{\varvec{ a}}}^H}(\theta ,{{\varvec{\beta }}}) + \sigma _n^2{{\varvec{ I}}}\). By calculating \(\dfrac{{\partial {{{\varvec{ A}}}^H}(\theta )}}{{\partial \theta }}\) and \(\dfrac{{{\partial ^2}{{{\varvec{ A}}}^H}(\theta )}}{{\partial {\theta ^2}}} \), we can get

$$\begin{aligned} \frac{{\partial {{{\varvec{ A}}}^H}(\theta )}}{{\partial \theta }}= & {} {\left[ \begin{array}{c} {{a'}_{1p}}(\theta )\\ {{a'}_{1p}}(\theta )\cos (\theta ) - {a_{1p}}(\theta )\sin (\theta )\\ {{a'}_{1p}}(\theta )\sin (\theta ) + {a_{1p}}(\theta )\cos (\theta )\\ \vdots \\ {{a'}_{Mp}}(\theta )\\ {{a'}_{Mp}}(\theta )\cos (\theta ) - {a_{Mp}}(\theta )\sin (\theta )\\ {{a'}_{Mp}}(\theta )\sin (\theta ) + {a_{Mp}}(\theta )\cos (\theta ) \end{array} \right] ^H}, \end{aligned}$$
(71)
$$\begin{aligned} \frac{{{\partial ^2}{{{\varvec{ A}}}^H}(\theta )}}{{\partial {\theta ^2}}}= & {} {\left[ \begin{array}{c} {{{a''}}_{1p}}(\theta )\\ {{{a''}}_{1p}}(\theta )\cos (\theta ) - 2{{a'}_{1p}}(\theta )\sin (\theta ) - {a_{1p}}(\theta )\cos (\theta )\\ {{{a''}}_{1p}}(\theta )\sin (\theta ) + 2{{a'}_{1p}}(\theta )\cos (\theta ) - {a_{1p}}(\theta )\sin (\theta )\\ \vdots \\ {{{a''}}_{Mp}}(\theta )\\ {{{a''}}_{Mp}}(\theta )\cos (\theta ) - 2{{a'}_{Mp}}(\theta )\sin (\theta ) - {a_{Mp}}(\theta )\cos (\theta )\\ {{{a''}}_{Mp}}(\theta )\sin (\theta ) + 2{{a'}_{Mp}}(\theta )\cos (\theta ) - {a_{Mp}}(\theta )\sin (\theta ) \end{array} \right] ^H}, \end{aligned}$$
(72)

where \({a'}_{mp}(\theta )\) and \({a''}_{mp}(\theta )\) represent the first derivative and the second derivative of \({a_{mp}}(\theta )\) with respect to \(\theta \), respectively.

In order to compute the analytic expression of \({\hat{b}}({\theta })\), we also need to compute the following inner product.

$$\begin{aligned} P= & {} \frac{\partial {{{\varvec{ A}}}^H}(\theta )}{{\partial \theta }}{{\varvec{ A}}}(\theta ) = \sum \limits _{m = 1}^M {{2a'}_{mp}^H(\theta ){a_{mp}}(\theta )} , \end{aligned}$$
(73)
$$\begin{aligned} J= & {} {{{\varvec{ B}}}^H}(\theta ,\beta ){{\varvec{ A}}}(\theta ) = \sum \limits _{m = 1}^M {(1 + \cos {\beta _m})} , \end{aligned}$$
(74)
$$\begin{aligned} W= & {} \frac{{\partial {{{\varvec{ A}}}^H}(\theta )}}{{\partial \theta }}{{\varvec{ B}}}(\theta ,\beta ) = \sum \limits _{m = 1}^M {{a'}_{mp}^H(\theta ){a_{mp}}(\theta )} \nonumber \\&+ \sum \limits _{m = 1}^M {{a'}_{mp}^H(\theta ){a_{mp}}(\theta )\cos {\beta _m}} - \sum \limits _{m = 1}^M {\sin {\beta _m}} , \end{aligned}$$
(75)
$$\begin{aligned} Q= & {} \frac{{{\partial ^2}{{{\varvec{ A}}}^H}(\theta )}}{{\partial {\theta ^2}}}{{\varvec{ B}}}(\theta ,\beta ) = \sum \limits _{m = 1}^M {{a''}_{mp}^H(\theta ){a_{mp}}(\theta )} + \sum \limits _{m = 1}^M {{a''}_{mp}^H(\theta ){a_{mp}}(\theta )\cos {\beta _m}} \nonumber \\&- 2\sum \limits _{m = 1}^M {{a'}_{mp}^H(\theta ){a_{mp}}(\theta )\sin {\beta _m}} - \sum \limits _{m = 1}^M {\cos {\beta _m}} , \end{aligned}$$
(76)
$$\begin{aligned} H= & {} \frac{{{\partial ^2}{{{\varvec{ A}}}^H}(\theta )}}{{\partial {\theta ^2}}}{{\varvec{ A}}}(\theta ) = \sum \limits _{m = 1}^M {(2{a''}_{mp}^H(\theta ){a_{mp}}(\theta ) - 1)} , \end{aligned}$$
(77)
$$\begin{aligned} D= & {} \frac{{\partial {{{\varvec{ A}}}^H}(\theta )}}{{\partial \theta }}\frac{{\partial {{\varvec{ A}}}(\theta )}}{{\partial \theta }} = \sum \limits _{m = 1}^M {(2{a'}_{mp}^H(\theta ){{a'}_{mp}}(\theta ) + 1)} , \end{aligned}$$
(78)

Substituting (73)–(78) into (70), finally leads to (27).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhang, Q., Shi, W. et al. Performance analysis and DOA estimation method over acoustic vector sensor array in the presence of polarity inconsistency. Multidim Syst Sign Process 31, 1341–1364 (2020). https://doi.org/10.1007/s11045-020-00712-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-020-00712-5

Keywords