Abstract
This article addresses the problem of unsupervised learning of multiple linear manifolds in a topology preserving neural map. The model finds simple linear estimations of the regions of the unknown data manifold. Each neuron of the map corresponds to a linear manifold whose basis and mean vectors and on- and off-manifold standard deviations must be learnt. The learning rules are derived based on competition between neurons and maximizing an approximation of the mutual information between the input and the output of each neuron. Neighborhood functions are also considered in the learning rules in order to develop the topology preserving property for the map. Considering two special density models for the input data, the optimal nonlinear input/output mappings of the neurons are found. Experimental results show a good performance for the proposed method on synthesized and practical problems compared with other relevant techniques.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Kohonen T (1995) The adaptive subspace SOM (ASSOM) and its use for the implementation of invariant feature detection. In: Proceedings of ICANN’95 international conference on artificial neural networks, vol 1. Paris, pp 3–10
Kohonen T (1996) Emergence of invariant-feature detectors in the adaptive subspace self-organizing map. Biol Cybern 75: 281–291. doi:10.1007/s004220050295
Kohonen T (2001) Self-organizing maps, 3rd edn. Springer-Verlag, Berlin
Kohonen T, Kaski S, Lappalainen H (1997) Self-organized formation of various invariant-feature filters in the adaptive-subspace SOM. Neural Comput 9(6): 1321–1344. doi:10.1162/neco.1997.9.6.1321
Ruiz-del-Solar J (1998) TEXSOM: texture segmentation using self-organizing maps. Neurocomputing 21: 7–18. doi:10.1016/S0925-2312(98)00041-1
Ruiz-del-Solar J, Kottow D (1999) Adaptive-subspace growing cell structures (ASGCS)—a new self-organizing network for automatic selection of feature variables. Lecture Notes in Computer Science 1607 (IWANN 99). Springer, pp 805–813
Tipping M, Bishop C (1999) Mixture of probabilistic principal component analyzers. Neural Comput 11(2): 443–482. doi:10.1162/089976699300016728
Lopez-Rubio E, Ortiz-de-Lazcano-Lobato JM, Munoz-Perez J, Gomez-Ruiz JA (2004) Principal components analysis competitive learning. Neural Comput 16: 2459–2481. doi:10.1162/0899766041941880
Kramer MA (1991) Nonlinear principal component analysis using autoassociative neural networks.. AIChE J 37(2): 233–243. doi:10.1002/aic.690370209
Xu L (1993) Least mean square error reconstruction principle for self organization. Neural Netw 6: 627–648. doi:10.1016/S0893-6080(05)80107-8
Schölkopf B, Smola A, Müller KR (1998) Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput 10: 1299–1319. doi:10.1162/089976698300017467
Malthouse EC (1998) Limitations of nonlinear PCA as performed with generic neural networks. IEEE Trans Neural Netw 9(1): 165–173. doi:10.1109/72.655038
Mika S, Schölkopf B, Smola AJ, Müller K-R, Scholz M, Rätsch G (1999) Kernel PCA and de-noising in feature spaces. In: Kearns MS, Solla SA, Cohn DA (eds) Advances in neural information processing systems (vol 11). MIT Press, Cambridge, MA, pp 536–542
Kwok JT, Tsang IW (2004) The pre-image problem in kernel methods. IEEE Trans Neural Netw 15(6): 1517–1525. doi:10.1109/TNN.2004.837781
Camastra F (2003) Data dimensionality estimation methods: a survey. Pattern Recognit 36: 2945–2954. doi:10.1016/S0031-3203(03)00176-6
Tenenbaum JB, de Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290: 2319–2323. doi:10.1126/science.290.5500.2319
Roweis S, Saul L (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290: 2323–2326. doi:10.1126/science.290.5500.2323
Ham J, Lee DD, Mika S, Schölkopf B (2004) A kernel view of the dimensionality reduction of manifolds. In: Greiner R, Schuurmans D (eds) Proceedings of the twenty-first international conference on machine learning, pp 369–376
Yeh MC, Lee IH, Wu G, Wu Y, Chang EY (2005) Manifold learning, a promised land or work in progress? IEEE international conference on multimedia and expo (ICME). The Netherlands, Amsterdam, pp 1154–1157
Liu Z (2002) Adaptive subspace self-organizing map and its applications in face recognition. Int J Image Graph 2(14): 519–540. doi:10.1142/S0219467802000834
Zhang B, Fu M, Yan H, Jabri MA (1999) Handwritten digit recognition by adaptive-subspace self-organizing map (ASSOM). IEEE Trans Neural Netw 10(4): 939–945. doi:10.1109/72.774267
Lopez-Rubio E, Munoz-Perez J, Gomez-Ruiz JA (2004) A principal components analysis self-organizing map. Neural Netw 17: 261–270. doi:10.1016/j.neunet.2003.04.001
Van Hulle MM (1999) Faithful representations with topographic maps. Neural Netw 12: 803–823. doi:10.1016/S0893-6080(99)00041-6
Haykin S (1999) Neural networks: a comprehensive foundation, 2nd edn. Prentice-Hall, Englewood Cliffs
Erdogmus D, Principe JC (2006) From linear adaptive filtering to nonlinear information processing. IEEE Signal Process Mag 23(6): 14–33. doi:10.1109/SP-M.2006.248709
Linsker R (1989) How to generate ordered maps by maximizing the mutual information between input and output signals. Neural Comput 1: 402–411. doi:10.1162/neco.1989.1.3.402
Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7: 1129–1159. doi:10.1162/neco.1995.7.6.1129
Van Hulle MM (2002) Joint entropy maximization in kernel-based topographic maps. Neural Comput 14: 1887–1906. doi:10.1162/089976602760128054
Adibi P, Safabakhsh R (2007) Joint entropy maximization in the kernel-based linear manifold topographic map. In: Proceedings of the international joint conference on neural networks (IJCNN 07). Orlando, Florida, pp 1133–1138
Laughlin S (1981) A simple coding procedure enhances a neuron’s information capacity. Z Naturforsch [C] 36: 910–912
Papoulis A, Unnikrishna Pillai S (2002) Probability, random variables and stochastic processes, 4th edn. McGraw-Hill, New York
Bell AJ (2003) Independent component analysis. In: Arbib MA (eds) The hand book of brain theory and neural networks, 2nd edn. MIT Press, Massachusetts
Bottou L (2003) Stochastic learning. In: Bousquet O, von Luxburg U, Rätsch G (eds) Advanced lectures on machine learning, volume 3176 of Lecture Notes in Computer Science. Springer, pp 146–168
Wang LX (1997) A course in Fuzzy systems and control. Prentice-Hall, Englewood Cliffs, NJ
Shah-Hosseini H, Safabakhsh R (2003) TASOM: a new time adaptive self-organizing map. IEEE Trans Syst Man Cybern B 33(2): 271–282. doi:10.1109/TSMCB.2003.810442
Nabney IT NETLAB Library [online] (2006) Available: http://www.ncrg.aston.ac.uk/netlab/index.php. Accessed October 2006
Standard Images [online] (2006) Available: http://en.wikipedia.org/wiki/Standard_test_image. Accessed October 2006
Adibi P, Safabakhsh R (2009) Linear manifold topographic map formation based on an energy function with on-line adaptation rules. Neurocomputing 72(7–9): 1817–1825
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Adibi, P., Safabakhsh, R. Information Maximization in a Linear Manifold Topographic Map. Neural Process Lett 29, 155–178 (2009). https://doi.org/10.1007/s11063-009-9101-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11063-009-9101-9