Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Convergence Analysis of Non-Negative Matrix Factorization for BSS Algorithm

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this paper the convergence of a recently proposed BSS algorithm is analyzed. This algorithm utilized Kullback–Leibler divergence to generate non-negative matrix factorizations of the observation vectors, which is considered an important aspect of the BSS algorithm. In the analysis some invariant sets are constructed so that the convergence of the algorithm can be guaranteed in the given conditions. In the simulation we successfully applied the algorithm and its analysis results to the blind source separation of mixed images and signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Comon P (1994) Independent component analysis-a new concept? Signal Process 36: 287–314

    Article  MATH  Google Scholar 

  2. Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7: 1129–1159

    Article  Google Scholar 

  3. Comon P, Mourrain B (1996) Decomposition of quantics in sums of powers of linear forms. Signal Process 53: 93–107

    Article  MATH  Google Scholar 

  4. Cardoso JF (1998) Blind signal separation: statistical principles. Proc IEEE 86: 2009–2025

    Article  Google Scholar 

  5. Lee TW (1998) Independent component analysis: theory and applications. Kluwer, Boston

    MATH  Google Scholar 

  6. Amari S, Cichocki A, Yang H (1996) A new learning algorithm for blind source separation, advances in neural information processing system, vol 8. MIT Press, Cambridge, pp 757–763

    Google Scholar 

  7. Cichocki A, Zdunek R, Amari S (2006) New algorithms for non-negative matrix factorization in applications to blind source separation. ICASSP-2006, Toulouse, France, pp 621–625

  8. Cichocki A, Zdunek R, Amari S (2006) Csiszar’s divergences for non-negative matrix factorization: family of new algorithms”. In: 6th international conference on independent component analysis and blind signal separation, Charleston SC, USA, Springer LNCS 3889, pp 32–39

  9. Lee DD, Seung HS (1999) Learning of the parts of objects by non-negative matrix factorization. Nature 401: 788–791

    Article  Google Scholar 

  10. Lee DD, Seung HS (2001) Algorithms for non-negative matrix factorization, vol 13. NIPS, MIT Press, Cambridge

    Google Scholar 

  11. Hoyer P (2004) Non-negative matrix factorization with sparseness constraints. J Mach Learn Res 5: 1457–1469

    MathSciNet  Google Scholar 

  12. Plumbly M, Oja E (2004) A “non-negative PCA” algorithm for independent component analysis. IEEE Trans Neural Netw 15(1): 66–76

    Article  Google Scholar 

  13. Oja E, Plumbley M (2004) Blind separation of positive sources by globally covergent graditent search. Nueral Comput 16(9): 1811–1925

    Article  MATH  Google Scholar 

  14. Plumbley M (2002) Condotions for non-negative inpendent component analysis. IEEE Signal Process Lett 9(6): 177–180

    Article  Google Scholar 

  15. Plumbley M (2003) Algorithms for non-negative inpendent component analysis. IEEE Trans Neural Netw 4(3): 534–543

    Article  Google Scholar 

  16. Xu L, Oja E, Suen CY (1992) Modified hebbian leraning for curve and surface fitting. Neural Netw 5: 441–457

    Article  Google Scholar 

  17. Agiza HN (1999) On the analysis of stbility, bifurcation, chaos and chaos control of Kopel Map. Chaos Solutions Fractals 10: 1909–1916

    Article  MATH  MathSciNet  Google Scholar 

  18. Cichocki A, Amari S, Siwek K, Tanaka T (2006) The ICALAB package: for image processing, version 1.2. RIKEN Brain Science Institute, Wako shi, Saitama, Japan

  19. Cichocki A, Zdunek R (2006) The NMFLAB package: for signal processing, version 1.1. RIKEN Brain Science Institute, Wako shi, Saitama, Japan

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangming Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Yi, Z. Convergence Analysis of Non-Negative Matrix Factorization for BSS Algorithm. Neural Process Lett 31, 45–64 (2010). https://doi.org/10.1007/s11063-009-9126-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-009-9126-0

Keywords