Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Concept Learning Using Vague Concept Lattice

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Recently, the theory of Formal Concept Analysis is extensively studied with bipolar fuzzy setting for adequate analysis of vagueness in fuzzy attributes via a defined sharp boundary. However, many real life data sets contain vague attributes (i.e. beautiful, bald, and tadpole) which cannot be defined through a sharp or restricted boundaries. To process these types of data sets the current paper focused on disparate representation of vagueness in attributes through its evidence to support and reject. To achieve this goal, a method is proposed to generate vague concept lattice with an illustrative example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Abbreviations

\(t_{A}\) :

Truth membership value

\(f_{A}\) :

False membership value

F :

Formal fuzzy context

(X, Y, \(\tilde{R}\)):

Formal fuzzy context-F

X :

Set of objects

Y :

Set of attributes

L :

Scale of truth degree

L :

Residuated lattice

\(\tilde{R}\) :

A map from \(X \times Y\) to L

\(\otimes \) :

Multiplication

\(\rightarrow \) :

Residuum

abc :

Elements in L

(\(\uparrow , \downarrow \)):

Galois connection

A :

Extent

B :

Intent

\(L^{{\textit{X}}}\) :

L-set of objects

\(L^{{\textit{Y}}}\) :

L-set of attributes

\(\bigcup \) :

Union

\(\bigcap \) :

Intersection

\(\wedge \) :

Infimum

\(\vee \) :

Supremum

m :

Total number of attributes

n :

Total number of objects

\(\textit{FC}_\mathbf{F }\) :

Set of concepts

I, J, Z :

Non-empty vague set

V :

Vertex set

\(v_{1}, v_{2}, v_{3}\) :

Vertex of graph

\(\rho \) :

Edges of fuzzy graph

T :

Fuzzy graph

\(v_{1}v_{2}, v_{2}v_{3}, v_{3}v_{1}\) :

Edges in the vague graph

E :

Vague set of edges

G :

Vague graph

References

  1. Wille R (1982) Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival I (eds) Ordered sets, NATO advanced study institutes series 83. pp 445–470

  2. Ganter B, Wille R (1999) Formal concept analysis: mathematical foundation. Springer, Berlin

    Book  MATH  Google Scholar 

  3. Davey BA, Priestley HA (2002) Introduction to lattices and order. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  4. Burusco Juandeaburre A, Funtes Gonzales R (1994) The study of the \(L\)-fuzzy concept lattice. Math Soft Comput 1(3):209–218

  5. Singh PK (2016) Processing linked formal fuzzy context using non-commutative composition. Inst Integr Omics Appl Biotechnol (IIOAB) J 7(5):21–32

    Google Scholar 

  6. Burusco A, Fuentes-Gonzales R (2001) The study on interval-valued contexts. Fuzzy Sets Syst 121(3):439–452

    Article  MathSciNet  MATH  Google Scholar 

  7. Singh PK, Kumar CA, Li J (2016) Knowledge representation using interval-valued fuzzy concept lattice. Soft Comput 20(4):1485–1502

    Article  MATH  Google Scholar 

  8. Singh PK, Kumar CA (2017) Concept lattice reduction using different subset of attributes as information granules. Granul Comput. doi:10.1007/s41066-016-0036-z

    Google Scholar 

  9. Yao YY (2017) Interval sets and three-way concept analysis in incomplete contexts. Int J Mach Learn Cybern 8(1):3–20

    Article  MathSciNet  Google Scholar 

  10. Singh PK, Kumar CA (2014) Bipolar fuzzy graph representation of concept lattice. Inf Sci 288:437–448

    Article  MathSciNet  MATH  Google Scholar 

  11. Singh PK (2017) Complex vague set based concept lattice. Chaos Solitons Fractals 96:145–153

    Article  MATH  Google Scholar 

  12. Li J, Huang C, Qi J, Qian Y, Liu W (2017) Three-way cognitive concept learning via multi-granularity. Inf Sci 378:244–263

    Article  Google Scholar 

  13. Singh PK (2017) Three-way fuzzy concept lattice representation using neutrosophic set. Int J Mach Learn Cybern 8(1):69–79

    Article  Google Scholar 

  14. Pandey LK, Ojha KK, Singh PK, Singh CS, Dwivedi S, Bergey EA (2016) Diatoms image database of India (DIDI): a research tool. Environ Technol Innov 5:148–160

    Article  Google Scholar 

  15. Li JH, Mei CL, Lv YJ (2013) Incomplete decision contexts: approximate concept construction, rule acquisition and knowledge reduction. Int J Approx Reason 54(1):149–165

    Article  MathSciNet  MATH  Google Scholar 

  16. Gao ZK, Cai Q, Yang YX, Dang WD, Zhang SS (2016) Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear time series. Sci Rep 6:35622. doi:10.1038/srep35622

    Article  Google Scholar 

  17. Gao ZK, Cai Q, Yang YX, Dong N, Zhang SS (2017) Visibility graph from adaptive optimal kernel time-frequency representation for classification of epileptiform EEG. Int J Neural Syst 27(4):1750005. doi:10.1142/S0129065717500058

    Article  Google Scholar 

  18. Gao ZK, Fang PC, Ding MS, Jin ND (2015) Multivariate weighted complex network analysis for characterizing nonlinear dynamic behavior in two-phase flow. Exp Therm Fluid Sci 60:157–164

    Article  Google Scholar 

  19. Gao ZK, Yang Y, Zhai L, Jin N, Chen G (2016) A four-sector conductance method for measuring and characterizing low-velocity oil–water two-phase flows. IEEE Trans Instrum Meas 65:1690–1697

    Article  Google Scholar 

  20. Dubois D, Prade H (2015) Formal concept analysis from the standpoint of possibility theory. In: Proceedings of ICFCA 2015, LNAI 9113. pp 21–38

  21. Li JH, Mei CL, Xu WH, Qian YH (2015) Concept learning via granular computing: a cognitive viewpoint. Inf Sci 298:447–467

    Article  MathSciNet  MATH  Google Scholar 

  22. Yao YY (2004) Concept lattices in rough set theory. In: Proceedings of 2004 annual meeting of the North American fuzzy information processing society. IEEE Computer Society, Washington, DC, pp 796–801

  23. Bělohlávek R, Vychodil V (2005) What is fuzzy concept lattice. In: Proceedings of CLA Olomuc. Czech Republic, pp 34–45

  24. Singh PK, Kumar CA, Gani A (2016) A comprehensive survey on formal concept analysis, its research trends and applications. Int J Appl Math Comput Sci 26(2):495–516

    Article  MathSciNet  MATH  Google Scholar 

  25. Singh PK, Kumar CA (2014) A note on bipolar fuzzy graph representation of concept lattice. Int J Comput Sci Math 5(4):381–393

    Article  MathSciNet  Google Scholar 

  26. Djouadi Y, Prade H (2009) Interval-valued fuzzy formal concept analysis. In: Rauch J et al (eds) ISMIS 2009, LNAI 5722. Springer, Berlin, pp 592–601

    Google Scholar 

  27. Gau WL, Buehrer DJ (1993) Vague sets. IEEE Trans Syst Man Cybern 23(2):610–614

    Article  MATH  Google Scholar 

  28. Borzooei RA, Rashmanlou H (2017) New concepts of vague graphs. Int J Mach Learn Cybern. doi:10.1007/s13042-015-0475-x

    MATH  Google Scholar 

  29. Akram M, Feng F, Sarwar S, Jun YB (2014) Certain type of vague graphs. UPB Bull Sci Ser 76(1):143–154

    MathSciNet  MATH  Google Scholar 

  30. Bloch I (2009) Geometry of spatial vague sets based on vague numbers and mathematical morphology. In: Fuzzy logic and applications, lecture notes in computer science, vol 5571. pp 237–245

  31. Chen SM (1995) Measures of similarity between vague sets. Fuzzy Sets Syst 74:217–223

    Article  MathSciNet  MATH  Google Scholar 

  32. Chunsheng C, Zhenchun Z, Feng L, Ying Q (2012) Application of vague set in recommender systems. In: Proceedings of 2nd international conference on logistics, informatics and service science (LISS), pp 1353–1359. doi:10.1007/978-3-642-32054-5-192

  33. Qin X, Liu Y, Xu Y (2014) Vague congruences and quotient lattice implication algebras. Sci World J. doi:10.1155/2014/197403

    Google Scholar 

  34. Zeng W, Zhao Y, Gu Y (2016) Similarity measure for vague sets based on implication functions. Knowl Based Syst 94:124–131

    Article  Google Scholar 

  35. Zhang Q, Zeng G, Xiao C, Yue Y (2014) A rule conflict resolution method based on Vague set. Soft Comput 18:549–555

    Article  Google Scholar 

  36. Xu W, Ma J, Wang S, Hao G (2010) Vague soft sets and their properties. Comput Math Appl 59:787–794

    Article  MathSciNet  MATH  Google Scholar 

  37. Solovyov SA (2013) Lattice-valued soft algebras. Soft Comput 17:1751–1766

    Article  MATH  Google Scholar 

  38. Ramakrishna N (2009) Vague graphs. Int J Comput Cogn 7:51–58

    Google Scholar 

  39. Bělohlávek R (2004) Concept lattices and order in fuzzy logic. Ann Pure Appl Logic 128(1–3):277–298

    Article  MathSciNet  MATH  Google Scholar 

  40. Pollandt S (1997) Fuzzy begriffe. Springer, Berlin

    Book  MATH  Google Scholar 

  41. Macko J (2013) User-friendly fuzzy FCA. In: Lecture notes in computer science, vol 7880. Springer, pp 156–171

  42. Djouadi Y (2011) Extended Galois derivation operators for information retrieval based on fuzzy formal concept lattice. In: Benferhal S, Goant J (eds) SUM 2011, LNAI 6929. Springer, Berlin, pp 346–358

    Google Scholar 

  43. Singh PK, Gani A (2015) Fuzzy concept lattice reduction using Shannon entropy and Huffman coding. J Appl Non-classical Log 25(2):101–119

    Article  MathSciNet  Google Scholar 

  44. Alcalde C, Burusco A, Fuentez-Gonzales R (2015) The use of two relations in \(L\)-fuzzy contexts. Inf Sci 301:1–12

    Article  MathSciNet  MATH  Google Scholar 

  45. Antoni L, Krajči S, Kŕidlo O, Macek B, Pisková L (2014) On heterogeneous formal contexts. Fuzzy Sets Syst 234:22–33

    Article  MathSciNet  MATH  Google Scholar 

  46. Akram M, Gani N, Saeid AB (2014) Vague hypergraphs. J Intell Fuzzy Syst 26:647–653

    MathSciNet  MATH  Google Scholar 

  47. Berry A, Sigayret A (2004) Representing concept lattice by a graph. Discrete Appl Math 144(1–2):27–42

    Article  MathSciNet  MATH  Google Scholar 

  48. Ghosh P, Kundu K, Sarkar D (2010) Fuzzy graph representation of a fuzzy concept lattice. Fuzzy Sets Syst 161(12):1669–1675

    Article  MathSciNet  MATH  Google Scholar 

  49. Singh PK, Kumar CA (2012) Interval-valued fuzzy graph representation of concept lattice. In: Proceedings of twelfth international conference on intelligent system design and application 2012. pp 604–609

  50. Sun Z, Zao Y, Cao D, Hao H (2016) Hierarchical multilabel classification with optimal path predictions. Neural Process Lett. doi:10.1007/s11063-016-9526-x

    Google Scholar 

  51. Rosenfeld A (1975) Fuzzy graphs. In: Zadeh LA, Fu KS, Shimura M (eds) Fuzzy sets and their applications. Academic Press, New York, pp 77–95

    Google Scholar 

  52. Singh PK, Kumar CA (2014) A note on computing the crisp order context of a fuzzy formal context for knowledge reduction. J Inf Process Syst 11(2):184–204

    Google Scholar 

  53. Khan S, Gani A, Wahab AWA, Singh PK (2017) Feature selection of Denial-of-Service attacks using entropy and granular computing. Arab J Sci Eng. doi:10.1007/s13369-017-2634-8

    Google Scholar 

Download references

Acknowledgements

Author is thankful to all the referees and editor for their valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P.K. Concept Learning Using Vague Concept Lattice. Neural Process Lett 48, 31–52 (2018). https://doi.org/10.1007/s11063-017-9699-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-017-9699-y

Keywords