Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

High Parameter Frequency Resolution Encoding Scheme for Spatial Audio Objects Using Stacked Sparse Autoencoder

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Object-based audio systems have become common in recent years as they provide the flexibility for many auditory scenarios, such as virtual reality games, interactive theater, and spatial audio communication. For saving bitrates, multiple audio objects are compressed into a mono downmix signal and side information parameters. However, side information parameter frequency resolution is too low to cause aliasing distortion. To overcome this issue, a new encoding scheme based on high parameter frequency resolution (224 sub-bands in a frame) is proposed in this paper. The side information parameters with high frequency resolution are compressed and reconstructed via SSAE (stacked sparse autoencoder) neural network and further used for recovering the audio objects. The performance of the proposed method is compared against existing SAOC (spatial audio object coding) methods at the same overall bitrate, judged by both objective and subjective results. The evaluation shows that our approach can facilitate the high quality of spatial audio objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ando A (2011) Conversion of multichannel sound signal maintaining physical properties of sound in reproduced sound field. IEEE Transactions Audio Speech Lang Process 19(6):1467–1475

    Article  Google Scholar 

  2. Antoine L, Fabian-Robert S, Zafar R, Daichi K, Bertrand R, Nobutaka I, Nobutaka O, Julie F (2017) The 2016 signal separation evaluation campaign. In: Latent Variable Analysis and Signal Separation - 12th International Conference, Springer International Publishing, pp 323–332

  3. Arteaga D, Pons J (2021) Multichannel-based learning for audio object extraction. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 206–210

  4. Bosi M, Goldberg RE (2012) Introduction to digital audio coding and standards, vol 721. Springer, New York

    Google Scholar 

  5. Bosi M, Brandenburg K, Quackenbush S, Fielder L, Akagiri K, Fuchs H, Dietz M, Herre J, Davidson G, Oikawa Y (1997) ISO/IEC MPEG-2 advanced audio coding. Audio Eng Soc (AES) 45(10):789–814

    Google Scholar 

  6. Dolby Laboratories (2015) Dolby Atmos for the Home Theater. [Available]: http://www.dolby.com/us/en/technologies/dolby-atmos/dolby-atmos-for-the-home-theater.pdf

  7. Dolby Laboratories (2016) Dolby Atmos. [Available]: http://www.dolby.com/us/en/brands/dolby-atmos.html

  8. Elfitri I, Muharam M, Shobirin M (2014) Distortion analysis of hierarchical mixing technique on MPEG surround standard. In: International Conference on Advanced Computer Science and Information System, pp 396–400

  9. Faller C, Baumgarte F (2003) Binaural cue coding-part II: schemes and applications. IEEE Transactions Speech Audio Process 11(6):520–531

    Article  Google Scholar 

  10. Févotte C, Gribonval R, Vincent E (2005) BSS\_EVAL toolbox user guide–Revision 2.0

  11. Gnouma M, Ladjailia A, Ejbali R, Zaied M (2019) Stacked sparse autoencoder and history of binary motion image for human activity recognition. Multimedia Tools Appl 78(2):2157–2179

    Article  Google Scholar 

  12. Herre J, Disch S (2007) New concepts in parametric coding of spatial audio: from SAC to SAOC. In: IEEE International Conference on Multimedia and Expo (ICME), pp 1894–1897

  13. Herre J, Purnhagen H, Koppens J, Hellmuth O, Engdegard J, Hilpert J, Villemoes L, Terentiv L, Falch C, Holzer A, Valero ML, Resch B, Mundt H, Oh HO (2012) MPEG spatial audio object coding-The ISO/MPEG standard for efficient coding of interactive audio scenes. Audio Eng Soc (AES) 60(9):655–673

    Google Scholar 

  14. Herre J, Hilpert J, Kuntz A, Plogsties J (2015a) MPEG-H 3D audio-the new standard for coding of immersive spatial audio. IEEE J Sel Topics Signal Process 9(5):770–779

    Article  Google Scholar 

  15. Herre J, Hilpert J, Kuntz A, Plogsties J (2015b) MPEG-H audio-the new standard for universal spatial/3D audio coding. Audio Eng Soc (AES) 62(12):821–830

    Article  Google Scholar 

  16. Hu C, Hu R, Wang X, Wu T, Li D (2020) Multi-step coding structure of spatial audio object coding. In: International Conference on Multimedia Modeling, pp 666–678

  17. Hu C, Hu R, Wang X, Wu Y (2021a) Spatial audio object coding based on time-frequency shifting and scheduling. In: IEEE International Conference on Multimedia and Expo (ICME), pp 1–6

  18. Hu C, Hu R, Wang X, Wu Y, Liu W (2021b) Efficient multi-step audio object coding with limited residual information. In: IEEE International Conference on Multimedia and Expo (ICME), pp 1–6

  19. Hu C, Wang X, Hu R, Wu Y (2021) Audio object coding based on n-step residual compensating. Multimedia Tools Appl 80(12):18717–18733

    Article  Google Scholar 

  20. ISO/IEC 23003-2 (2018) Information technology —- MPEG audio technologies —- Part 2: Spatial Audio Object Coding (SAOC)

  21. ISO/IEC 23008-3 (2019) Information technology —- High efficiency coding and media delivery in heterogeneous environments —- Part 3: 3D audio

  22. Jia M, Yang Z, Bao C, Zheng X, Ritz C (2015) Encoding multiple audio objects using intra-object sparsity. IEEE/ACM Transactions Audio Speech Lang Process 23(6):1082–1095

    Article  Google Scholar 

  23. Jia M, Zhang J, Bao C, Zheng X (2017) A psychoacoustic-based multiple audio object coding approach via intra-object sparsity. Appl Sci 7(12):1301–1312

    Article  Google Scholar 

  24. Kadam VJ, Jadhav SM, Kurdukar AA, Shirsath MR (2020) Arrhythmia classification using feature ensemble learning based on stacked sparse autoencoders with GA-SVM guided features. In: International Conference on Industry 4.0 Technology (I4Tech), pp 94–99

  25. Kim K, Seo J, Beack S, Kang K, Hahn M (2011) Spatial audio object coding with two-step coding structure for interactive audio service. IEEE Transactions Multimedia 13(6):1208–1216

    Article  Google Scholar 

  26. Li Y, Lei Y, Wang P, Jiang M, Liu Y (2021) Embedded stacked group sparse autoencoder ensemble with L1 regularization and manifold reduction. Appl Soft Comput 101:107003

    Article  Google Scholar 

  27. Murtaza A, Herre J, Paulus J, Terentiv L, Fuchs H, Disch S (2015) ISO/MPEG-H 3D audio: SAOC 3D decoding and rendering. In: Audio Engineering Society (AES) Convention 139

  28. Purnhagen H, Hirvonen T, Villemoes L, Samuelsson J, Klejsa J (2016) Immersive audio delivery using joint object coding. In: Audio Engineering Society (AES) Convention 140

  29. Recommendation ITU-R BS1534-3 (2015) Method for the subjective assessment of intermediate quality level of audio systems. International Telecommunication Union Radiocommunication Assembly

  30. Rohlfing C, ECohen J, Liutkus A (2017) Very low bitrate spatial audio coding with dimensionality reduction. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 741–745

  31. Shi C, Luo B, He S, Li K, Liu H, Li B (2020) Tool wear prediction via multidimensional stacked sparse autoencoders with feature fusion. IEEE Transactions Ind Inform 16(8):5150–5159

    Article  Google Scholar 

  32. Villemoes L, Hirvonen T, Purnhagen H (2017) Decorrelation for audio object coding. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 706–710

  33. Vincent E, Gribonval R, Févotte C (2006) Performance measurement in blind audio source separation. IEEE Transactions Audio Speech Lang Process 14(4):1462–1469

    Article  Google Scholar 

  34. Wang Y, Yao H, Zhao S (2016) Auto-encoder based dimensionality reduction. Neurocomputing 184:232–242

    Article  Google Scholar 

  35. Wu T, Hu R, Wang X, Ke S, Wang J (2017) High quality audio object coding framework based on non-negative matrix factorization. China Commun 14(9):32–41

    Article  Google Scholar 

  36. Wu T, Hu R, Wang X, Ke S (2019) Audio object coding based on optimal parameter frequency resolution. Multimedia Tools Appl 78(15):20723–20738

    Article  Google Scholar 

  37. Wu Y, Hu R, Hu C, Ke S, Li G, Wang X (2021a) Low bitrates audio object coding using convolutional auto-encoder and densenet mixture model. In: IEEE International Conference on Multimedia and Expo (ICME), pp 1–6

  38. Wu Y, Hu R, Wang X, Hu C, Li G (2021b) Stacked sparse autoencoder for audio object coding. In: International Conference on Multimedia Modeling (MMM), pp 50–61

  39. Yang F, Herranz L, Cheng Y, Mozerov MG (2021) Slimmable compressive autoencoders for practical neural image compression. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 4998–5007

  40. Yang Z, Jia M, Bao C, Wang W (2015a) An analysis-by-synthesis encoding approach for multiple audio objects. In: Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), pp 59–62

  41. Yang Z, Jia M, Wang W, Zhang J (2015b) Multi-stage encoding scheme for multiple audio objects using compressed sensing. Cybern Information Technol 15(6):135–146

    Article  MathSciNet  Google Scholar 

  42. Yu M, Quan T, Peng Q, Yu X, Liu L (2021) A model-based collaborate filtering algorithm based on stacked AutoEncoder. Neural Comput Appl. https://doi.org/10.1007/s00521-021-05933-8

  43. Zhang Q, Zhou J, Zhang B (2020) A noninvasive method to detect diabetes mellitus and lung cancer using the stacked sparse autoencoder. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1409–1413

  44. Zhang S, Wu X, Qu T (2019) Sparse autoencoder based multiple audio objects coding method. In: Audio Engineering Society (AES) Convention 146

  45. Zheng X, Ritz C, Xi J (2013) Encoding navigable speech sources: a psychoacoustic-based analysis-by-synthesis approach. IEEE Transactions Audio Speech Lang Process 21(1):29–38

    Article  Google Scholar 

  46. Zheng X, Ritz C, Xi J (2013b) A psychoacoustic-based analysis-by-synthesis scheme for jointly encoding multiple audio objects into independent mixtures. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 281–285

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2017YFB1002803), the National Nature Science Foundation of China (No. 61801334, No. U1803262), and Basic Research Project of Science and Technology Plan of Shenzhen (JCYJ20170818143246278).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruimin Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Hu, R., Wang, X. et al. High Parameter Frequency Resolution Encoding Scheme for Spatial Audio Objects Using Stacked Sparse Autoencoder. Neural Process Lett 54, 817–833 (2022). https://doi.org/10.1007/s11063-021-10659-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-021-10659-8

Keywords