Abstract
Object-based audio systems have become common in recent years as they provide the flexibility for many auditory scenarios, such as virtual reality games, interactive theater, and spatial audio communication. For saving bitrates, multiple audio objects are compressed into a mono downmix signal and side information parameters. However, side information parameter frequency resolution is too low to cause aliasing distortion. To overcome this issue, a new encoding scheme based on high parameter frequency resolution (224 sub-bands in a frame) is proposed in this paper. The side information parameters with high frequency resolution are compressed and reconstructed via SSAE (stacked sparse autoencoder) neural network and further used for recovering the audio objects. The performance of the proposed method is compared against existing SAOC (spatial audio object coding) methods at the same overall bitrate, judged by both objective and subjective results. The evaluation shows that our approach can facilitate the high quality of spatial audio objects.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ando A (2011) Conversion of multichannel sound signal maintaining physical properties of sound in reproduced sound field. IEEE Transactions Audio Speech Lang Process 19(6):1467–1475
Antoine L, Fabian-Robert S, Zafar R, Daichi K, Bertrand R, Nobutaka I, Nobutaka O, Julie F (2017) The 2016 signal separation evaluation campaign. In: Latent Variable Analysis and Signal Separation - 12th International Conference, Springer International Publishing, pp 323–332
Arteaga D, Pons J (2021) Multichannel-based learning for audio object extraction. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 206–210
Bosi M, Goldberg RE (2012) Introduction to digital audio coding and standards, vol 721. Springer, New York
Bosi M, Brandenburg K, Quackenbush S, Fielder L, Akagiri K, Fuchs H, Dietz M, Herre J, Davidson G, Oikawa Y (1997) ISO/IEC MPEG-2 advanced audio coding. Audio Eng Soc (AES) 45(10):789–814
Dolby Laboratories (2015) Dolby Atmos for the Home Theater. [Available]: http://www.dolby.com/us/en/technologies/dolby-atmos/dolby-atmos-for-the-home-theater.pdf
Dolby Laboratories (2016) Dolby Atmos. [Available]: http://www.dolby.com/us/en/brands/dolby-atmos.html
Elfitri I, Muharam M, Shobirin M (2014) Distortion analysis of hierarchical mixing technique on MPEG surround standard. In: International Conference on Advanced Computer Science and Information System, pp 396–400
Faller C, Baumgarte F (2003) Binaural cue coding-part II: schemes and applications. IEEE Transactions Speech Audio Process 11(6):520–531
Févotte C, Gribonval R, Vincent E (2005) BSS\_EVAL toolbox user guide–Revision 2.0
Gnouma M, Ladjailia A, Ejbali R, Zaied M (2019) Stacked sparse autoencoder and history of binary motion image for human activity recognition. Multimedia Tools Appl 78(2):2157–2179
Herre J, Disch S (2007) New concepts in parametric coding of spatial audio: from SAC to SAOC. In: IEEE International Conference on Multimedia and Expo (ICME), pp 1894–1897
Herre J, Purnhagen H, Koppens J, Hellmuth O, Engdegard J, Hilpert J, Villemoes L, Terentiv L, Falch C, Holzer A, Valero ML, Resch B, Mundt H, Oh HO (2012) MPEG spatial audio object coding-The ISO/MPEG standard for efficient coding of interactive audio scenes. Audio Eng Soc (AES) 60(9):655–673
Herre J, Hilpert J, Kuntz A, Plogsties J (2015a) MPEG-H 3D audio-the new standard for coding of immersive spatial audio. IEEE J Sel Topics Signal Process 9(5):770–779
Herre J, Hilpert J, Kuntz A, Plogsties J (2015b) MPEG-H audio-the new standard for universal spatial/3D audio coding. Audio Eng Soc (AES) 62(12):821–830
Hu C, Hu R, Wang X, Wu T, Li D (2020) Multi-step coding structure of spatial audio object coding. In: International Conference on Multimedia Modeling, pp 666–678
Hu C, Hu R, Wang X, Wu Y (2021a) Spatial audio object coding based on time-frequency shifting and scheduling. In: IEEE International Conference on Multimedia and Expo (ICME), pp 1–6
Hu C, Hu R, Wang X, Wu Y, Liu W (2021b) Efficient multi-step audio object coding with limited residual information. In: IEEE International Conference on Multimedia and Expo (ICME), pp 1–6
Hu C, Wang X, Hu R, Wu Y (2021) Audio object coding based on n-step residual compensating. Multimedia Tools Appl 80(12):18717–18733
ISO/IEC 23003-2 (2018) Information technology —- MPEG audio technologies —- Part 2: Spatial Audio Object Coding (SAOC)
ISO/IEC 23008-3 (2019) Information technology —- High efficiency coding and media delivery in heterogeneous environments —- Part 3: 3D audio
Jia M, Yang Z, Bao C, Zheng X, Ritz C (2015) Encoding multiple audio objects using intra-object sparsity. IEEE/ACM Transactions Audio Speech Lang Process 23(6):1082–1095
Jia M, Zhang J, Bao C, Zheng X (2017) A psychoacoustic-based multiple audio object coding approach via intra-object sparsity. Appl Sci 7(12):1301–1312
Kadam VJ, Jadhav SM, Kurdukar AA, Shirsath MR (2020) Arrhythmia classification using feature ensemble learning based on stacked sparse autoencoders with GA-SVM guided features. In: International Conference on Industry 4.0 Technology (I4Tech), pp 94–99
Kim K, Seo J, Beack S, Kang K, Hahn M (2011) Spatial audio object coding with two-step coding structure for interactive audio service. IEEE Transactions Multimedia 13(6):1208–1216
Li Y, Lei Y, Wang P, Jiang M, Liu Y (2021) Embedded stacked group sparse autoencoder ensemble with L1 regularization and manifold reduction. Appl Soft Comput 101:107003
Murtaza A, Herre J, Paulus J, Terentiv L, Fuchs H, Disch S (2015) ISO/MPEG-H 3D audio: SAOC 3D decoding and rendering. In: Audio Engineering Society (AES) Convention 139
Purnhagen H, Hirvonen T, Villemoes L, Samuelsson J, Klejsa J (2016) Immersive audio delivery using joint object coding. In: Audio Engineering Society (AES) Convention 140
Recommendation ITU-R BS1534-3 (2015) Method for the subjective assessment of intermediate quality level of audio systems. International Telecommunication Union Radiocommunication Assembly
Rohlfing C, ECohen J, Liutkus A (2017) Very low bitrate spatial audio coding with dimensionality reduction. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 741–745
Shi C, Luo B, He S, Li K, Liu H, Li B (2020) Tool wear prediction via multidimensional stacked sparse autoencoders with feature fusion. IEEE Transactions Ind Inform 16(8):5150–5159
Villemoes L, Hirvonen T, Purnhagen H (2017) Decorrelation for audio object coding. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 706–710
Vincent E, Gribonval R, Févotte C (2006) Performance measurement in blind audio source separation. IEEE Transactions Audio Speech Lang Process 14(4):1462–1469
Wang Y, Yao H, Zhao S (2016) Auto-encoder based dimensionality reduction. Neurocomputing 184:232–242
Wu T, Hu R, Wang X, Ke S, Wang J (2017) High quality audio object coding framework based on non-negative matrix factorization. China Commun 14(9):32–41
Wu T, Hu R, Wang X, Ke S (2019) Audio object coding based on optimal parameter frequency resolution. Multimedia Tools Appl 78(15):20723–20738
Wu Y, Hu R, Hu C, Ke S, Li G, Wang X (2021a) Low bitrates audio object coding using convolutional auto-encoder and densenet mixture model. In: IEEE International Conference on Multimedia and Expo (ICME), pp 1–6
Wu Y, Hu R, Wang X, Hu C, Li G (2021b) Stacked sparse autoencoder for audio object coding. In: International Conference on Multimedia Modeling (MMM), pp 50–61
Yang F, Herranz L, Cheng Y, Mozerov MG (2021) Slimmable compressive autoencoders for practical neural image compression. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp 4998–5007
Yang Z, Jia M, Bao C, Wang W (2015a) An analysis-by-synthesis encoding approach for multiple audio objects. In: Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), pp 59–62
Yang Z, Jia M, Wang W, Zhang J (2015b) Multi-stage encoding scheme for multiple audio objects using compressed sensing. Cybern Information Technol 15(6):135–146
Yu M, Quan T, Peng Q, Yu X, Liu L (2021) A model-based collaborate filtering algorithm based on stacked AutoEncoder. Neural Comput Appl. https://doi.org/10.1007/s00521-021-05933-8
Zhang Q, Zhou J, Zhang B (2020) A noninvasive method to detect diabetes mellitus and lung cancer using the stacked sparse autoencoder. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 1409–1413
Zhang S, Wu X, Qu T (2019) Sparse autoencoder based multiple audio objects coding method. In: Audio Engineering Society (AES) Convention 146
Zheng X, Ritz C, Xi J (2013) Encoding navigable speech sources: a psychoacoustic-based analysis-by-synthesis approach. IEEE Transactions Audio Speech Lang Process 21(1):29–38
Zheng X, Ritz C, Xi J (2013b) A psychoacoustic-based analysis-by-synthesis scheme for jointly encoding multiple audio objects into independent mixtures. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp 281–285
Acknowledgements
This work was supported by the National Key R&D Program of China (No. 2017YFB1002803), the National Nature Science Foundation of China (No. 61801334, No. U1803262), and Basic Research Project of Science and Technology Plan of Shenzhen (JCYJ20170818143246278).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wu, Y., Hu, R., Wang, X. et al. High Parameter Frequency Resolution Encoding Scheme for Spatial Audio Objects Using Stacked Sparse Autoencoder. Neural Process Lett 54, 817–833 (2022). https://doi.org/10.1007/s11063-021-10659-8
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11063-021-10659-8