Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Off-Policy: Model-Free Optimal Synchronization Control for Complex Dynamical Networks

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this paper, a novel off-policy iterative algorithm is developed, which only uses the measurement data along the trajectory of the system to deal with the optimal control problem of the discrete-time complex dynamic networks. By approximating the solutions of the coupled Hamilton–Jacobi–Bellman equations, a local performance index is defined to solve the optimal synchronization problem for discrete-time nonlinear complex dynamic networks without knowing the node dynamics and the topology of the directed graph. Based on this, an off-policy iteration algorithm is designed to iteratively improve the target policy, and the convergence of the algorithm is proved theoretically. Actor-critic neural networks along with the gradient descent approach are employed to approximate optimal control policies and performance index functions using the data generated by applying prescribed behavior policies. Finally, two numerical simulation examples are given to show the effectiveness of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Wang XF, Chen G (2003) Complex networks: small-world, scale-free and beyond. IEEE Circuits Syst Mag 3:6–20

    Article  Google Scholar 

  2. Arenas A, Díaz-Guilera A, Kurths J et al (2008) Synchronization in complex networks. Phys Rep 469:93–153

    Article  MathSciNet  Google Scholar 

  3. Wu W, Xiong N, Wu C (2017) Improved clustering algorithm based on energy consumption in wireless sensor networks. IET Netw 6:1–7

    Article  Google Scholar 

  4. Li C, Chen G (2004) Synchronization in general complex dynamical networks with coupling delays. Phys A Stat Mech Appl 343:263–278

    Article  MathSciNet  Google Scholar 

  5. Kao Y, Li Y, Park JH, Chen X (2021) Mittag-leffler synchronization of delayed fractional memristor neural networks via adaptive control. IEEE Trans Neural Netw Learn Syst 32:2279–2284

    Article  MathSciNet  Google Scholar 

  6. Rakkiyappan R, Sakthivel N, Cao J (2015) Stochastic sampled-data control for synchronization of complex dynamical networks with control packet loss and additive time-varying delays. Neural Netw 66:46–63

    Article  Google Scholar 

  7. Chen G, Xia J, Park JH et al (2021) Robust sampled-data control for switched complex dynamical networks with actuators saturation. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2021.3069813

    Article  Google Scholar 

  8. Li H, Kao Y, Bao H, Chen Y (2021) Uniform stability of complex-valued neural networks of fractional order with linear impulses and fixed time delays. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2021.3070136

    Article  Google Scholar 

  9. Ding D, Tang Z, Wang Y et al (2021) Secure synchronization for cyber-physical complex networks based on self-triggering impulsive control: static and dynamic method. IEEE Trans Netw Sci Eng. https://doi.org/10.1109/tnse.2021.3106943

    Article  MathSciNet  Google Scholar 

  10. Jiang Y, Jiang ZP (2012) Computational adaptive optimal control for continuous-time linear systems with completely unknown dynamics. Automatica 48:2699–2704

    Article  MathSciNet  Google Scholar 

  11. Ding S, Wang Z, Member S, Xie X (2021) Periodic event-triggered synchronization for discrete-time complex dynamical networks. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2021.3053652

    Article  Google Scholar 

  12. Zou Y, Su H, Tang R, Yang X (2021) Finite-time bipartite synchronization of switched competitive neural networks with time delay via quantized control. ISA Trans. https://doi.org/10.1016/j.isatra.2021.06.015

    Article  Google Scholar 

  13. Tang R, Su H, Zou Y, Yang X (2021) Finite-time synchronization of markovian coupled neural networks with delays via intermittent quantized control: linear programming approach. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2021.3069926

    Article  Google Scholar 

  14. Tang Z, Xuan D, Park JH et al (2020) Impulsive effects based distributed synchronization of heterogeneous coupled neural networks. IEEE Trans Netw Sci Eng 8:498–510

    Article  MathSciNet  Google Scholar 

  15. Xing W, Shi P, Agarwal RK, Li L (2020) Robust \(H_{\infty }\) pinning synchronization for complex networks with event-triggered communication scheme. IEEE Trans Circuits Syst I Regul Pap 64:5233–5245

    Article  MathSciNet  Google Scholar 

  16. Boonraksa T, Boonraksa P, Marungsri B (2021) Optimal capacitor location and sizing for reducing the power loss on the power distribution systems due to the dynamic load of the electric buses charging system using the artificial bee colony algorithm. J Electr Eng Technol. https://doi.org/10.1007/s42835-021-00718-4

    Article  Google Scholar 

  17. Vahabi S, Eslaminejad M, Dashti SE (2019) Integration of geographic and hierarchical routing protocols for energy saving in wireless sensor networks with mobile sink. Wirel Netw 25:2953–2961

    Article  Google Scholar 

  18. Kao Y, Li H (2021) Asymptotic multistability and local S-asymptotic \(\omega \)-periodicity for the nonautonomous fractional-order neural networks with impulses. Sci China Inf Sci 64:112207. https://doi.org/10.1007/s11432-019-2821-x

    Article  MathSciNet  Google Scholar 

  19. Zhang H, Liu Y, Xiao G, Jiang H (2020) Data-based adaptive dynamic programming for a class of discrete-time systems with multiple delays. IEEE Trans Syst Man, Cybern Syst 50:432–441

    Article  Google Scholar 

  20. Al-Tamimi A, Lewis FL, Abu-Khalaf M (2008) Discrete-time nonlinear HJB solution using approximate dynamic programming: convergence proof. IEEE Trans Syst Man, Cybern Part B Cybern 38:943–949

    Article  Google Scholar 

  21. Abouheaf MI, Lewis FL, Vamvoudakis KG et al (2014) Multi-agent discrete-time graphical games and reinforcement learning solutions. Automatica 50:3038–3053

    Article  MathSciNet  Google Scholar 

  22. Mu C, Liao K, Ren L, Gao Z (2020) Approximately optimal control of discrete-time nonlinear switched systems using globalized dual heuristic programming. Neural Process Lett 52:1089–1108

    Article  Google Scholar 

  23. Wei Q, Liu D, Lin Q, Song R (2018) Adaptive dynamic programming for discrete-time zero-sum games. IEEE Trans Neural Netw Learn Syst 53:957–967

    Article  Google Scholar 

  24. Wei Q, Zhu L, Song R et al (2020) Model-free adaptive optimal control for unknown nonlinear multiplayer nonzero-sum game. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2020.3030127

    Article  Google Scholar 

  25. He S, Fang H, Zhang M et al (2020) Adaptive optimal control for a class of nonlinear systems: the online policy iteration approach. IEEE Trans Neural Netw Learn Syst 31:549–558

    Article  MathSciNet  Google Scholar 

  26. Peng Z, Zhao Y, Hu J, Ghosh BK (2019) Data-driven optimal tracking control of discrete-time multi-agent systems with two-stage policy iteration algorithm. Inf Sci (Ny) 481:189–202

    Article  MathSciNet  Google Scholar 

  27. Modares H, Nageshrao SP, Lopes GAD et al (2016) Optimal model-free output synchronization of heterogeneous systems using off-policy reinforcement learning. Automatica 71:334–341

    Article  MathSciNet  Google Scholar 

  28. Vamvoudakis KG, Lewis FL, Hudas GR (2012) Multi-agent differential graphical games: online adaptive learning solution for synchronization with optimality. Automatica 48:1598–1611

    Article  MathSciNet  Google Scholar 

  29. Zhang H, Jiang H, Luo Y, Xiao G (2017) Data-driven optimal consensus control for discrete-time multi-agent systems with unknown dynamics using reinforcement learning method. IEEE Trans Ind Electron 64:4091–4100

    Article  Google Scholar 

  30. Wang W, Chen X, Fu H, Wu M (2020) Model-free distributed consensus control based on actor-critic framework for discrete-time nonlinear multiagent systems. IEEE Trans Syst Man, Cybern Syst 50:4123–4134

    Article  Google Scholar 

  31. Xiao X, Li XJ (2018) Adaptive dynamic programming methodbased synchronisation control of a class of complex dynamical networks with unknown dynamics and actuator faults. IET Control Theory Appl 12:291–298

    Article  MathSciNet  Google Scholar 

  32. Cao YW, Yang GH, Li XJ (2019) Optimal synchronization controller design for complex dynamical networks with unknown system dynamics. J Franklin Inst 356:6071–6086

    Article  MathSciNet  Google Scholar 

  33. Hu W, Gao L, Dong T (2021) Event-based projective synchronization for different dimensional complex dynamical networks with unknown dynamics by using data-driven scheme. Neural Process Lett. https://doi.org/10.1007/s11063-021-10515-9

    Article  Google Scholar 

  34. Hu W, Gao L, Dong T (2020) Data-driven optimal synchronization for complex networks with unknown dynamics. IEEE Access 8:224083–224091

    Article  Google Scholar 

  35. Li J, Chai T, Lewis FL et al (2019) Off-Policy interleaved Q-Learning: optimal control for affine nonlinear discrete-time dystems. IEEE Trans Neural Netw Learn Syst 30:1308–1320

    Article  MathSciNet  Google Scholar 

  36. Li J, Modares H, Chai T et al (2017) Off-policy reinforcement learning for synchronization in multiagent graphical games. IEEE Trans Neural Netw Learn Syst 28:2434–2445

    Article  MathSciNet  Google Scholar 

  37. Zhang H, Luo Y, Liu D (2009) Neural-network-based near-optimal control for a class of discrete-time affine nonlinear systems with control constraints. IEEE Trans Neural Netw 20:1490–1503

    Article  Google Scholar 

  38. Liu D, Wei Q (2014) Policy iteration adaptive dynamic programming algorithm for discrete-time nonlinear systems. IEEE Trans Neural Netw Learn Syst 25:621–634

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFB1701903 and in part by the National Natural Science Foundation of China under Grant 61973138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, Y. & Ji, Z. Off-Policy: Model-Free Optimal Synchronization Control for Complex Dynamical Networks. Neural Process Lett 54, 2941–2958 (2022). https://doi.org/10.1007/s11063-022-10748-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-022-10748-2

Keywords