Abstract
This paper is concerned with the parameter estimation of nonlinear chaotic system, which could be essentially formulated as a multi-dimensional optimization problem. In this paper, a hybrid algorithm by combining differential evolution with artificial bee colony is implemented to solve parameter estimation for chaotic systems. Hybrid algorithm combines the exploration of differential evolution with the exploitation of the artificial bee colony effectively. Experiments have been conducted on Lorenz system and Chen system. The proposed algorithm is applied to estimate the parameters of two chaotic systems. Simulation results and comparisons demonstrate that the proposed algorithm is better or at least comparable to differential evolution, artificial bee colony, particle swarm optimization, and genetic algorithm from literature when considering the quality of the solutions obtained.
Similar content being viewed by others
References
Chen, G., Dong, X.: From Chaos to Order: Methodologies, Perspectives, and Applications. World Scientific, Singapore (1998)
Dai, D., Ma, X.K., Li, F.C., You, Y.: An approach of parameter estimation for a chaotic system based on genetic algorithm. Acta Phys. Sinica 11, 2459–2462 (2002)
He, Q., Wang, L., Liu, B.: Parameter estimation for chaotic systems by particle swarm optimization. Chaos Solitons Fractals 34, 654–661 (2007)
Inés, P.M., Joaquín, M.: An approximate gradient-descent method for joint parameter estimation and synchronization of coupled chaotic systems. Phys. Lett. A. 351, 262–267 (2006)
Li, L.X., Yang, Y.X., Peng, H.P., Wang, X.D.: Parameters identification of chaotic systems via chaotic ant swarm. Chaos Solitons Fractals 28, 1204–1211 (2006)
Peng, B., Liu, B., Zhang, F.Y., Wang, L.: Differential evolution algorithm based parameter estimation for chaotic systems. Chaos Solitons Fractals 39, 2110–2118 (2009)
Wang, L., Tang, F., Wu, H.: Hybrid genetic algorithm based on quantum computing for numerical optimization and parameter estimation. Appl. Math. Comput. 171, 1141–1156 (2005)
Sun, J., Zhao, J., Wu, X.J., Fang, W., Cai, Y.J., Xu, W.B.: Parameter estimation for chaotic systems with a Drift Particle Swarm Optimization method. Phys. Lett. A. 374, 2816–2822 (2010)
Xu, Y., Wang, L.: An effective hybrid biogeography-based optimization algorithm for parameter estimation of chaotic systems. Expert Syst. Appl. 30, 15103–15109 (2011)
Wang, L., Li, L.P.: An effective hybrid quantum-inspired evolutionary algorithm for parameter estimation of chaotic systems. Expert Syst. Appl. 37, 1279–1285 (2010)
Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11, 341–359 (1997)
Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8, 687–697 (2008)
Chahkandi, V., Yaghoobi, M., Veisi, G.: CABC-CSA: a new chaotic hybrid algorithm for solving optimization problems. Nonlinear Dyn. 73, 1–10 (2013)
Chen, C.H.: Compensatory neural fuzzy networks with rule-based cooperative differential evolution for nonlinear system control. Nonlinear Dyn. 75, 1–12 (2013)
Sun, J., Zhang, Q., Tsang, E.: DE/EDA: a new evolutionary algorithm for global optimization. Inf. Sci. 169, 249–262 (2004)
Kim, D.H., Abraham, A., Cho, J.H.: A hybrid genetic algorithm and bacterial foraging approach for global optimization. Inf. Sci. 177, 3918–3937 (2007)
Choi, D.H.: Cooperative mutation based evolutionary programming for continuous function optimization. Oper. Res. Lett. 30(3), 195–201 (2002)
Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evolut. Comput. 15, 4–31 (2011)
Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 1, 1–37 (2012)
Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)
Chen, G., Ueta, T.: Yet another chaotic attractor. Int. J. Bifurcat. Chaos. 9, 1465–1466 (1999)
Lüand, J., Chen, G.: A new chaotic attractor coined. Int. J. Bifurcat. Chaos. 12, 659–661 (2002)
Acknowledgments
This work was supported by the National Natural Science Foundation of China under Grant Nos. 61370052, 61370156, and 11226275; Natural Science Foundation of Jilin Province under Grant No. 201215006; and Program for New Century Excellent Talents in University under Grant NCET-13-0724. We thank Quan Liu for correcting the English in this manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, X., Yin, M. Parameter estimation for chaotic systems by hybrid differential evolution algorithm and artificial bee colony algorithm. Nonlinear Dyn 77, 61–71 (2014). https://doi.org/10.1007/s11071-014-1273-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-014-1273-9