Abstract
In this article, the estimation problem in a class of nonlinear fractional-order systems is solved by a stable estimator that generalizes the classical exponential observers, establishing a new class called Mittag–Leffler observers. The solution to the linear quadratic regulator problem is proposed to design optimal control laws for fractional-order linear systems and its applications. All the results are based on the Caputo derivative for commensurate fractional-order systems. Numerical simulations validate the proposed theory.
Similar content being viewed by others
References
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
Ross, B.: The development of fractional calculus 1695–1900. Hist. Math. 4(1), 75–89 (1977)
Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
Machado, J.A.T., Silva, M.F., Barbosa, R.S., Jesus, I.S., Reis, C.M., Marcos, M.G., Galhano, A.F.: Some applications of fractional calculus in engineering. Math. Probl. Eng. 2010, 1–34 (2010)
Nutting, P.G.: A new general law of deformation. J. Frankl. Inst. 191(5), 679–685 (1921)
Nutting, P.G.: A general stress–strain-time formula. J. Frankl. Inst. 235(5), 513–524 (1943)
Scott Blair, G.W., Reiner, M.: The rheological law underlying the nutting equation. Appl. Sci. Res. 2(1), 225–234 (1951)
Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55(3), 3581–3592 (1997)
Gómez-Aguilar, J.F., Rosales-García, J.J., Bernal-Alvarado, J.J., Córdova-Fraga, T., Guzmán-Cabrera, R.: Fractional mechanical oscillators. Rev. Mex. Fís. 58(4), 348–352 (2012)
Gómez-Aguilar, J.F., Razo-Hernández, R., Granados-Lieberman, D.: A physical interpretation of fractional calculus in observables terms: analysis of the fractional time constant and the transitory response. Rev. Mex. Fís 60(1), 32–38 (2014)
Engheta, N.: On fractional calculus and fractional multipoles in electromagnetism. IEEE Trans. Antennas Propag. 44(4), 554–566 (1996)
Yang, X.J., Machado, J.A.T., Cattani, C., Gao, F.: On a fractal LC-electric circuit modeled by local fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 47, 200–206 (2017)
Sierociuk, D., Malesza, W., Macias, M.: Derivation, interpretation, and analog modelling of fractional variable order derivative definition. Appl. Math. Model. 39(13), 3876–3888 (2015)
Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5(4), 367–386 (2002)
Tarasov, V.E.: Geometric interpretation of fractional-order derivative. Fract. Calc. Appl. Anal. 19(5), 1200–1221 (2016)
Heymans, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives. Rheol. Acta 45(5), 765–771 (2006)
Sabatier, J., Merveillaut, M., Malti, R., Oustaloup, A.: How to impose physically coherent initial conditions to a fractional system? Commun. Nonlinear Sci. Numer. Simul. 15(5), 1318–1326 (2010)
Martínez-Fuentes, O., Martínez-Guerra, R.: Generalized synchronization in chaotic Liouvillian fractional systems. In: IEEE American Control Conference, pp. 2747–2752 (2016)
Muñoz-Vázquez, A.J., Parra-Vega, V., Sánchez-Orta, A.: Fractional integral sliding modes for robust tracking of nonlinear systems. Nonlinear Dyn. 87(2), 895–901 (2017)
Maheri, M., Arifin, N.M.: Synchronization of two different fractional-order chaotic systems with unknown parameters using a robust adaptive nonlinear controller. Nonlinear Dyn. 85(2), 825–838 (2016)
Muñiz-Montero, C., García-Jiménez, L.V., Sánchez-Gaspariano, L.A., Sánchez-López, C., González-Díaz, V.R., Tlelo-Cuautle, E.: New alternatives for analog implementation of fractional-order integrators, differentiators and PID controllers based on integer-order integrators. Nonlinear Dyn. 90(1), 241–256 (2017)
Lan, Y.H., Wang, L.L., Ding, L., Zhou, Y.: Full-order and reduced-order observer design for a class of fractional-order nonlinear systems. Asian J. Control 18(4), 1467–1477 (2016)
Li, C., Wang, J., Lu, J., Ge, Y.: Observer-based stabilisation of a class of fractional order non-linear systems for \(0< \alpha < 2 \) case. IET Control Theory Appl. 8(13), 1238–1246 (2014)
Cafagna, D., Grassi, G.: Observer-based synchronization for a class of fractional chaotic systems via a scalar signal: results involving the exact solution of the error dynamics. Int. J. Bifurc. Chaos 21(3), 955–962 (2011)
Matignon, D., d’Andrea–Novel, B.: Observer-based controllers for fractional differential systems. In: IEEE Conference on Decision and Control, pp. 4967–4972 (1997)
Wei, Y.H., Sun, Z.Y., Hu, Y.S., Wang, Y.: On fractional order adaptive observer. Int. J. Autom. Comput. 12(6), 664–670 (2015)
Djeghali, N., Djennoune, S., Bettayeb, M., Ghanes, M., Barbot, J.P.: Observation and sliding mode observer for nonlinear fractional-order system with unknown input. ISA Trans. 63, 1–10 (2016)
Cruz-Victoria, J.C., Martínez-Guerra, R., Pérez-Pinacho, C.A., Gómez-Cortés, G.C.: Synchronization of nonlinear fractional order systems by means of PIr\(\alpha \) reduced order observer. Appl. Math. Comput. 262, 224–231 (2015)
Martínez-Guerra, R., Pérez-Pinacho, C.A., Gómez-Cortés, G.C., Cruz-Victoria, J.C.: Synchronization of incommensurate fractional order system. Appl. Math. Comput. 262, 260–266 (2015)
Meléndez-Vázquez, F., Martínez-Fuentes, O., Martínez-Guerra, R.: Fractional fault-tolerant dynamical controller for a class of commensurate-order fractional systems. Int. J. Syst. Sci. 49(1), 196–210 (2017)
Kou, S.R., Elliott, D.L., Tarn, T.J.: Exponential observers for nonlinear dynamic systems. Inf. Control 29(3), 204–216 (1975)
Xia, X.h, Gao, W.b: On exponential observers for nonlinear systems. Syst. Control Lett. 11(4), 319–325 (1988)
Hassan, M.F.: Observer-based controller for discrete-time systems: a state dependent Riccati equation approach. Nonlinear Dyn. 70(1), 693–707 (2012)
Chen, C.S.: Optimal nonlinear observers for chaotic synchronization with message embedded. Nonlinear Dyn. 61(4), 623–632 (2010)
Li, Y., Chen, Y.Q.: Fractional order linear quadratic regulator. In: IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, pp. 363–368 (2008)
Mousa, M.E., Ebrahim, M.A., Moustafa Hassan, M.A.: Optimal fractional order proportional-integral-differential controller for inverted pendulum with reduced order linear quadratic regulator. In: Azar AT, Vaidyanathan S, Ouannas A (eds) Fractional Order Control and Synchronization of Chaotic Systems, vol. 688, pp. 225–252. Springer, Cham (2017)
Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Yverdon (1999)
Diethelm, K.: The Analysis of Fractional Differential Equations. An Application-oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)
Matignon, D., d’Andrea-Novel, B.: Some results on controllability and observability of finite-dimensional fractional differential systems. Comput. Eng. Syst. Appl. 2, 952–956 (1996)
Khalil, H.K.: Nonlinear Systems. Prentice-Hall, New Jersey (1996)
Li, Y., Chen, Y.Q., Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8), 1965–1969 (2009)
Duarte-Mermoud, M.A., Aguila-Camacho, N., Gallegos, J.A., Castro-Linares, R.: Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 22(1), 650–659 (2015)
Kleinman, D.: On an iterative technique for Riccati equation computations. IEEE Trans. Autom. Control 13(1), 114–115 (1968)
Raghavan, S., Hedrick, J.K.: Observer design for a class of nonlinear systems. Int. J. Control 59(2), 515–528 (1994)
Aqeel, M., Azam, A., Ahmad, S.: Control of chaos: Lie algebraic exact linearization approach for the Lü system. Eur. Phys. J. Plus 132, 426 (2017)
Dias, F.S., Mello, L.F.: Hopf bifurcations and small amplitude limit cycles in Rucklidge systems. Electron. J. Differ. Equ. 2013(48), 1–9 (2013)
Aqeel, M., Ahmad, S.: Analytical and numerical study of Hopf bifurcation scenario for a three-dimensional chaotic system. Nonlinear Dyn. 84(2), 755–765 (2016)
Messias, M., De Carvalho Braga, D., Mello, L.F.: Degenerate Hopf bifurcations in Chua’s system. Int. J. Bifurc. Chaos 19(2), 497–515 (2009)
Azam, A., Aqeel, M., Ahmad, S., Ahmad, F.: Chaotic behavior of modified stretch-twist-fold (STF) flow with fractal property. Nonlinear Dyn. 90(1), 1–12 (2017)
Dias, F.S., Mello, L.F., Zhang, J.G.: Nonlinear analysis in a Lorenz-like system. Nonlinear Anal. Real World Appl. 11(5), 3491–3500 (2010)
Li, C., Chen, G.: Chaos and hyperchaos in the fractional-order Rössler equations. Physica A 341, 55–61 (2004)
Zhang, W., Zhou, S., Li, H., Zhu, H.: Chaos in a fractional-order Rössler system. Chaos Solitons Fractals 42(3), 1684–1691 (2009)
Lee, S.M.: The double-simple pendulum problem. Am. J. Phys. 38(4), 536–537 (1970)
Goldstein, H.: Classical Mechanics. Addison-Wesley, Reading, MA (1980)
Acknowledgements
The first author thanks the National Council for Science and Technology (CONACyT), Mexico, for the financial support of Ph.D. Grant 295538.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that there is no conflict of interest regarding the publication of this paper.
Rights and permissions
About this article
Cite this article
Martínez-Fuentes, O., Martínez-Guerra, R. A novel Mittag–Leffler stable estimator for nonlinear fractional-order systems: a linear quadratic regulator approach. Nonlinear Dyn 94, 1973–1986 (2018). https://doi.org/10.1007/s11071-018-4469-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-018-4469-6