Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A novel Mittag–Leffler stable estimator for nonlinear fractional-order systems: a linear quadratic regulator approach

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this article, the estimation problem in a class of nonlinear fractional-order systems is solved by a stable estimator that generalizes the classical exponential observers, establishing a new class called Mittag–Leffler observers. The solution to the linear quadratic regulator problem is proposed to design optimal control laws for fractional-order linear systems and its applications. All the results are based on the Caputo derivative for commensurate fractional-order systems. Numerical simulations validate the proposed theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  2. Ross, B.: The development of fractional calculus 1695–1900. Hist. Math. 4(1), 75–89 (1977)

    Article  MathSciNet  Google Scholar 

  3. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  Google Scholar 

  4. Machado, J.A.T., Silva, M.F., Barbosa, R.S., Jesus, I.S., Reis, C.M., Marcos, M.G., Galhano, A.F.: Some applications of fractional calculus in engineering. Math. Probl. Eng. 2010, 1–34 (2010)

    Article  Google Scholar 

  5. Nutting, P.G.: A new general law of deformation. J. Frankl. Inst. 191(5), 679–685 (1921)

    Article  Google Scholar 

  6. Nutting, P.G.: A general stress–strain-time formula. J. Frankl. Inst. 235(5), 513–524 (1943)

    Article  Google Scholar 

  7. Scott Blair, G.W., Reiner, M.: The rheological law underlying the nutting equation. Appl. Sci. Res. 2(1), 225–234 (1951)

    Article  Google Scholar 

  8. Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55(3), 3581–3592 (1997)

    Article  MathSciNet  Google Scholar 

  9. Gómez-Aguilar, J.F., Rosales-García, J.J., Bernal-Alvarado, J.J., Córdova-Fraga, T., Guzmán-Cabrera, R.: Fractional mechanical oscillators. Rev. Mex. Fís. 58(4), 348–352 (2012)

    Google Scholar 

  10. Gómez-Aguilar, J.F., Razo-Hernández, R., Granados-Lieberman, D.: A physical interpretation of fractional calculus in observables terms: analysis of the fractional time constant and the transitory response. Rev. Mex. Fís 60(1), 32–38 (2014)

    MathSciNet  Google Scholar 

  11. Engheta, N.: On fractional calculus and fractional multipoles in electromagnetism. IEEE Trans. Antennas Propag. 44(4), 554–566 (1996)

    Article  MathSciNet  Google Scholar 

  12. Yang, X.J., Machado, J.A.T., Cattani, C., Gao, F.: On a fractal LC-electric circuit modeled by local fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 47, 200–206 (2017)

    Article  Google Scholar 

  13. Sierociuk, D., Malesza, W., Macias, M.: Derivation, interpretation, and analog modelling of fractional variable order derivative definition. Appl. Math. Model. 39(13), 3876–3888 (2015)

    Article  MathSciNet  Google Scholar 

  14. Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5(4), 367–386 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Tarasov, V.E.: Geometric interpretation of fractional-order derivative. Fract. Calc. Appl. Anal. 19(5), 1200–1221 (2016)

    Article  MathSciNet  Google Scholar 

  16. Heymans, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann–Liouville fractional derivatives. Rheol. Acta 45(5), 765–771 (2006)

    Article  Google Scholar 

  17. Sabatier, J., Merveillaut, M., Malti, R., Oustaloup, A.: How to impose physically coherent initial conditions to a fractional system? Commun. Nonlinear Sci. Numer. Simul. 15(5), 1318–1326 (2010)

    Article  MathSciNet  Google Scholar 

  18. Martínez-Fuentes, O., Martínez-Guerra, R.: Generalized synchronization in chaotic Liouvillian fractional systems. In: IEEE American Control Conference, pp. 2747–2752 (2016)

  19. Muñoz-Vázquez, A.J., Parra-Vega, V., Sánchez-Orta, A.: Fractional integral sliding modes for robust tracking of nonlinear systems. Nonlinear Dyn. 87(2), 895–901 (2017)

    Article  MathSciNet  Google Scholar 

  20. Maheri, M., Arifin, N.M.: Synchronization of two different fractional-order chaotic systems with unknown parameters using a robust adaptive nonlinear controller. Nonlinear Dyn. 85(2), 825–838 (2016)

    Article  MathSciNet  Google Scholar 

  21. Muñiz-Montero, C., García-Jiménez, L.V., Sánchez-Gaspariano, L.A., Sánchez-López, C., González-Díaz, V.R., Tlelo-Cuautle, E.: New alternatives for analog implementation of fractional-order integrators, differentiators and PID controllers based on integer-order integrators. Nonlinear Dyn. 90(1), 241–256 (2017)

    Article  MathSciNet  Google Scholar 

  22. Lan, Y.H., Wang, L.L., Ding, L., Zhou, Y.: Full-order and reduced-order observer design for a class of fractional-order nonlinear systems. Asian J. Control 18(4), 1467–1477 (2016)

    Article  MathSciNet  Google Scholar 

  23. Li, C., Wang, J., Lu, J., Ge, Y.: Observer-based stabilisation of a class of fractional order non-linear systems for \(0< \alpha < 2 \) case. IET Control Theory Appl. 8(13), 1238–1246 (2014)

    Article  MathSciNet  Google Scholar 

  24. Cafagna, D., Grassi, G.: Observer-based synchronization for a class of fractional chaotic systems via a scalar signal: results involving the exact solution of the error dynamics. Int. J. Bifurc. Chaos 21(3), 955–962 (2011)

    Article  MathSciNet  Google Scholar 

  25. Matignon, D., d’Andrea–Novel, B.: Observer-based controllers for fractional differential systems. In: IEEE Conference on Decision and Control, pp. 4967–4972 (1997)

  26. Wei, Y.H., Sun, Z.Y., Hu, Y.S., Wang, Y.: On fractional order adaptive observer. Int. J. Autom. Comput. 12(6), 664–670 (2015)

    Article  Google Scholar 

  27. Djeghali, N., Djennoune, S., Bettayeb, M., Ghanes, M., Barbot, J.P.: Observation and sliding mode observer for nonlinear fractional-order system with unknown input. ISA Trans. 63, 1–10 (2016)

    Article  Google Scholar 

  28. Cruz-Victoria, J.C., Martínez-Guerra, R., Pérez-Pinacho, C.A., Gómez-Cortés, G.C.: Synchronization of nonlinear fractional order systems by means of PIr\(\alpha \) reduced order observer. Appl. Math. Comput. 262, 224–231 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Martínez-Guerra, R., Pérez-Pinacho, C.A., Gómez-Cortés, G.C., Cruz-Victoria, J.C.: Synchronization of incommensurate fractional order system. Appl. Math. Comput. 262, 260–266 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Meléndez-Vázquez, F., Martínez-Fuentes, O., Martínez-Guerra, R.: Fractional fault-tolerant dynamical controller for a class of commensurate-order fractional systems. Int. J. Syst. Sci. 49(1), 196–210 (2017)

    Article  MathSciNet  Google Scholar 

  31. Kou, S.R., Elliott, D.L., Tarn, T.J.: Exponential observers for nonlinear dynamic systems. Inf. Control 29(3), 204–216 (1975)

    Article  MathSciNet  Google Scholar 

  32. Xia, X.h, Gao, W.b: On exponential observers for nonlinear systems. Syst. Control Lett. 11(4), 319–325 (1988)

    Article  MathSciNet  Google Scholar 

  33. Hassan, M.F.: Observer-based controller for discrete-time systems: a state dependent Riccati equation approach. Nonlinear Dyn. 70(1), 693–707 (2012)

    Article  MathSciNet  Google Scholar 

  34. Chen, C.S.: Optimal nonlinear observers for chaotic synchronization with message embedded. Nonlinear Dyn. 61(4), 623–632 (2010)

    Article  MathSciNet  Google Scholar 

  35. Li, Y., Chen, Y.Q.: Fractional order linear quadratic regulator. In: IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, pp. 363–368 (2008)

  36. Mousa, M.E., Ebrahim, M.A., Moustafa Hassan, M.A.: Optimal fractional order proportional-integral-differential controller for inverted pendulum with reduced order linear quadratic regulator. In: Azar AT, Vaidyanathan S, Ouannas A (eds) Fractional Order Control and Synchronization of Chaotic Systems, vol. 688, pp. 225–252. Springer, Cham (2017)

    Chapter  Google Scholar 

  37. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Yverdon (1999)

    MATH  Google Scholar 

  38. Diethelm, K.: The Analysis of Fractional Differential Equations. An Application-oriented Exposition Using Differential Operators of Caputo Type. Springer, Berlin (2010)

    MATH  Google Scholar 

  39. Matignon, D., d’Andrea-Novel, B.: Some results on controllability and observability of finite-dimensional fractional differential systems. Comput. Eng. Syst. Appl. 2, 952–956 (1996)

    Google Scholar 

  40. Khalil, H.K.: Nonlinear Systems. Prentice-Hall, New Jersey (1996)

    Google Scholar 

  41. Li, Y., Chen, Y.Q., Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45(8), 1965–1969 (2009)

    Article  MathSciNet  Google Scholar 

  42. Duarte-Mermoud, M.A., Aguila-Camacho, N., Gallegos, J.A., Castro-Linares, R.: Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 22(1), 650–659 (2015)

    Article  MathSciNet  Google Scholar 

  43. Kleinman, D.: On an iterative technique for Riccati equation computations. IEEE Trans. Autom. Control 13(1), 114–115 (1968)

    Article  Google Scholar 

  44. Raghavan, S., Hedrick, J.K.: Observer design for a class of nonlinear systems. Int. J. Control 59(2), 515–528 (1994)

    Article  MathSciNet  Google Scholar 

  45. Aqeel, M., Azam, A., Ahmad, S.: Control of chaos: Lie algebraic exact linearization approach for the Lü system. Eur. Phys. J. Plus 132, 426 (2017)

    Article  Google Scholar 

  46. Dias, F.S., Mello, L.F.: Hopf bifurcations and small amplitude limit cycles in Rucklidge systems. Electron. J. Differ. Equ. 2013(48), 1–9 (2013)

    MathSciNet  MATH  Google Scholar 

  47. Aqeel, M., Ahmad, S.: Analytical and numerical study of Hopf bifurcation scenario for a three-dimensional chaotic system. Nonlinear Dyn. 84(2), 755–765 (2016)

    Article  MathSciNet  Google Scholar 

  48. Messias, M., De Carvalho Braga, D., Mello, L.F.: Degenerate Hopf bifurcations in Chua’s system. Int. J. Bifurc. Chaos 19(2), 497–515 (2009)

    Article  MathSciNet  Google Scholar 

  49. Azam, A., Aqeel, M., Ahmad, S., Ahmad, F.: Chaotic behavior of modified stretch-twist-fold (STF) flow with fractal property. Nonlinear Dyn. 90(1), 1–12 (2017)

    Article  MathSciNet  Google Scholar 

  50. Dias, F.S., Mello, L.F., Zhang, J.G.: Nonlinear analysis in a Lorenz-like system. Nonlinear Anal. Real World Appl. 11(5), 3491–3500 (2010)

    Article  MathSciNet  Google Scholar 

  51. Li, C., Chen, G.: Chaos and hyperchaos in the fractional-order Rössler equations. Physica A 341, 55–61 (2004)

    Article  MathSciNet  Google Scholar 

  52. Zhang, W., Zhou, S., Li, H., Zhu, H.: Chaos in a fractional-order Rössler system. Chaos Solitons Fractals 42(3), 1684–1691 (2009)

    Article  Google Scholar 

  53. Lee, S.M.: The double-simple pendulum problem. Am. J. Phys. 38(4), 536–537 (1970)

    Article  Google Scholar 

  54. Goldstein, H.: Classical Mechanics. Addison-Wesley, Reading, MA (1980)

    MATH  Google Scholar 

Download references

Acknowledgements

The first author thanks the National Council for Science and Technology (CONACyT), Mexico, for the financial support of Ph.D. Grant 295538.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Martínez-Fuentes.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-Fuentes, O., Martínez-Guerra, R. A novel Mittag–Leffler stable estimator for nonlinear fractional-order systems: a linear quadratic regulator approach. Nonlinear Dyn 94, 1973–1986 (2018). https://doi.org/10.1007/s11071-018-4469-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-018-4469-6

Keywords