Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

One-dimensional gap solitons in quintic and cubic–quintic fractional nonlinear Schrödinger equations with a periodically modulated linear potential

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Competing nonlinearities, such as the cubic (Kerr) and quintic nonlinear terms whose strengths are of opposite signs (the coefficients in front of the nonlinearities), exist in various physical media (in particular, in optical and matter-wave media). A benign competition between self-focusing cubic and self-defocusing quintic nonlinear nonlinearities (known as cubic–quintic model) plays an important role in creating and stabilizing the self-trapping of D-dimensional localized structures, in the contexts of standard nonlinear Schrödinger equation. We incorporate an external periodic potential (linear lattice) into this model and extend it to the space-fractional scenario that begins to surface in very recent years—the nonlinear fractional Schrödinger equation (NLFSE), therefore obtaining the cubic–quintic or the purely quintic NLFSE, and investigate the propagation and stability properties of self-trapped modes therein. Two types of one-dimensional localized gap modes are found, including the fundamental and dipole-mode gap solitons. Employing the techniques based on the linear-stability analysis and direct numerical simulations, we get the stability regions of all the localized modes; and particularly, the anti-Vakhitov–Kolokolov criterion applies for the stable portions of soliton families generated in the frameworks of quintic-only nonlinearity and competing cubic–quintic nonlinear terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bender, C.M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having \(\cal{PT}\) symmetry. Phys. Rev. Lett. 80, 5243 (1998)

    MathSciNet  MATH  Google Scholar 

  2. Bender, C.M., Brody, D.C., Jones, H.F.: Complex extension of quantum mechanics. Phys. Rev. Lett. 89, 270401 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Bender, C.M., Brody, D.C., Jones, H.F., Meister, B.K.: Faster than Hermitian quantum mechanics. Phys. Rev. Lett. 98, 040403 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Zeng, J., Lan, Y.: Two-dimensional solitons in \(\cal{PT}\) linear lattice potentials. Phys. Rev. E 85, 047601 (2012)

    Google Scholar 

  5. El-Ganainy, R., Makris, K.G., Khajavikhan, M., Musslimani, Z.H., Rotter, S., Christodoulides, D.N.: Non-Hermitian physics and PT symmetry. Nat. Phys. 14, 11 (2018)

    Google Scholar 

  6. Konotop, V.V., Yang, J., Zezyulin, D.A.: Nonlinear waves in \(\cal{PT}\)-symmetric systems. Rev. Mod. Phys. 81, 013624 (2016)

    Google Scholar 

  7. Suchkov, S.V., Sukhorukov, A.A., Huang, J., Dmitriev, S.V., Lee, C., Kivshar, Y.S.: Nonlinear switching and solitons in PT-symmetric photonic systems. Laser Photonics Rev. 10, 177 (2016)

    Google Scholar 

  8. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)

    MathSciNet  MATH  Google Scholar 

  9. Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62, 3135 (2000)

    MATH  Google Scholar 

  10. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)

    MathSciNet  Google Scholar 

  11. Herrmann, R.: Fractional Calculus: An Introduction for Physicists. World Scientific, Singapore (2011)

    MATH  Google Scholar 

  12. Stickler, B.A.: Potential condensed-matter realization of space-fractional quantum mechanics: the one-dimensional Lévy crystal. Phys. Rev. E 88, 012120 (2013)

    Google Scholar 

  13. Longhi, S.: Fractional Schrödinger equation in optics. Opt. Lett. 40, 1117 (2015)

    Google Scholar 

  14. Zhang, Y., Liu, X., Belić, M.R., Zhong, W., Zhang, Y., Xiao, M.: Propagation dynamics of a light beam in a fractional Schrödinger equation. Phys. Rev. Lett. 115, 180403 (2015)

    Google Scholar 

  15. Zhang, Y., Zhong, H., Belić, M.R., Ahmed, N., Zhang, Y., Xiao, M.: Diffraction-free beams in fractional Schrödinger equation. Sci. Rep. 6, 23645 (2016)

    Google Scholar 

  16. Zhang, Y., Zhong, H., Belić, M.R., Zhu, Y., Zhong, W., Zhang, Y., Christodoulides, D.N., Xiao, M.: \(\cal{PT}\) symmetry in a fractional Schrödinger equation. Laser Photonics Rev. 10, 526 (2016)

    Google Scholar 

  17. Zhang, L., Li, C., Zhong, H., Xu, C., Lei, D., Li, Y., Fan, D.: Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: from linear to nonlinear regimes. Opt. Express 24, 14406 (2016)

    Google Scholar 

  18. Zhong, W.P., Belić, M.R., Malomed, B.A., Zhang, Y., Huang, T.: Spatiotemporal accessible solitons in fractional dimensions. Phys. Rev. E 94, 012216 (2016)

    Google Scholar 

  19. Zhong, W.P., Belić, M.R., Zhang, Y.: Accessible solitons of fractional dimension. Ann. Phys. 368, 110 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Zhang, Y., Wang, R., Zhong, H., Zhang, J., Belić, M.R., Zhang, Y.: Optical Bloch oscillation and Zener tunneling in the fractional Schrödinger equation. Sci. Rep. 7, 17872 (2017)

    Google Scholar 

  21. Huang, C., Dong, L.: Beam propagation management in a fractional Shrödinger equation. Sci. Rep. 7, 5442 (2017)

    Google Scholar 

  22. Zhang, L., He, Z., Conti, C., Wang, Z., Hu, Y., Lei, D., Li, Y., Fan, D.: Modulational instability in fractional nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 48, 531 (2017)

    MathSciNet  Google Scholar 

  23. Chen, M., Zeng, S., Lu, D., Hu, W., Guo, Q.: Optical solitons, self-focusing, and wave collapse in a space-fractional Schrödinger equation with a Kerr-type nonlinearity. Phys. Rev. E 98, 022211 (2018)

    MathSciNet  Google Scholar 

  24. Chen, M., Guo, Q., Lu, D., Hu, W.: Variational approach for breathers in a nonlinear fractional Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 71, 73 (2019)

    MathSciNet  Google Scholar 

  25. Huang, C., Dong, L.: Gap solitons in the nonlinear fractional Schrödinger equation with an optical lattice. Opt. Lett. 41, 5636 (2016)

    Google Scholar 

  26. Dong, L., Huang, C.: Double-hump solitons in fractional dimensions with a \(\cal{PT}\)-symmetric potential. Opt. Express 26, 10509 (2018)

    Google Scholar 

  27. Yao, X., Liu, X.: Off-site and on-site vortex solitons in space-fractional photonic lattices. Opt. Lett. 43, 5749 (2018)

    Google Scholar 

  28. Zeng, L., Zeng, J.: One-dimensional solitons in fractional Schrödinger equation with a spatially periodical modulated nonlinearity: nonlinear lattice. Opt. Lett. 44, 2661 (2019)

    Google Scholar 

  29. Kartashov, Y.V., Malomed, B.A., Torner, L.: Solitons in nonlinear lattices. Rev. Mod. Phys. 83, 247 (2011)

    Google Scholar 

  30. Kartashov, Y.V., Astrakharchik, G.E., Malomed, B.A., Torner, L.: Frontiers in multidimensional self-trapping of nonlinear fields and matter. Nat. Rev. Phys. 1, 185 (2019)

    Google Scholar 

  31. Triki, H., Porsezian, K., Dinda, P.T., Grelu, P.: Dark spatial solitary waves in a cubic–quintic-septimal nonlinear medium. Phys. Rev. A 95, 023837 (2017)

    Google Scholar 

  32. Cisternas, J., Descalzi, O., Albers, T., Radons, G.: Anomalous diffusion of dissipative solitons in the cubic–quintic complex Ginzburg–Landau equation in two spatial dimensions. Phys. Rev. Lett. 116, 203901 (2016)

    Google Scholar 

  33. Gao, X., Zeng, J.: Two-dimensional matter-wave solitons and vortices in competing cubic–quintic nonlinear lattices. Front. Phys. 13, 130501 (2018)

    Google Scholar 

  34. Zegadlo, K.B., Wasak, T., Malomed, B.A., Karpierz, M.A., Trippenbach, M.: Stabilization of solitons under competing nonlinearities by external potentials. Chaos 24, 043136 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Burlak, G., Malomed, B.A.: Interactions of three-dimensional solitons in the cubic–quintic model. Chaos 28, 063121 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Desyatnikov, A., Maimistov, A., Malomed, B.: Three-dimensional spinning solitons in dispersive media with the cubic–quintic nonlinearity. Phys. Rev. E 61, 3107 (2000)

    Google Scholar 

  37. Paredes, A., Feijoo, D., Michinel, H.: Coherent cavitation in the liquid of light. Phys. Rev. Lett. 112, 173901 (2014)

    Google Scholar 

  38. Falcão-Filho, E.L., de Araújo, C.B., Boudebs, G., Leblond, H., Skarka, V.: Robust two-dimensional spatial solitons in liquid carbon disulfide. Phys. Rev. Lett. 110, 013901 (2013)

    Google Scholar 

  39. Reyna, A.S., de Araújo, C.B.: Nonlinearity management of photonic composites and observation of spatial-modulation instability due to quintic nonlinearity. Phys. Rev. A 89, 063803 (2014)

    Google Scholar 

  40. Reyna, A.S., de Araújo, C.B.: High-order optical nonlinearities in plasmonic nanocomposites—a review. Adv. Opt. Photonics 9, 720 (2017)

    Google Scholar 

  41. Chin, C., Grimm, R., Julienne, P., Tsienga, E.: Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225 (2010)

    Google Scholar 

  42. Zeng, J., Malomed, B.A.: Stabilization of one-dimensional solitons against the critical collapse by quintic nonlinear lattices. Phys. Rev. A 85, 023824 (2012)

    Google Scholar 

  43. Shi, J., Zeng, J., Malomed, B.A.: Suppression of the critical collapse for one-dimensional solitons by saturable quintic nonlinear lattices. Chaos 28, 075501 (2018)

    MathSciNet  Google Scholar 

  44. Petrov, D.S.: Quantum mechanical stabilization of a collapsing Bose–Bose mixture. Phys. Rev. Lett. 115, 155302 (2015)

    Google Scholar 

  45. Petrov, D.S., Astrakharchik, G.E.: Ultradilute low-dimensional liquids. Phys. Rev. Lett. 117, 100401 (2016)

    Google Scholar 

  46. Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade, R.D.: Photonic Crystals: Molding the Flow of Light. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  47. Christodoulides, D.N., Lederer, F., Silberberg, Y.: Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature 424, 817 (2003)

    Google Scholar 

  48. Garanovich, I.L., Longhi, S., Sukhorukova, A.A., Kivshar, Y.S.: Light propagation and localization in modulated photonic lattices and waveguides. Phys. Rep. 518, 1 (2012)

    Google Scholar 

  49. Chen, Z., Segev, M., Christodoulides, D.N.: Optical spatial solitons: historical overview and recent advances. Rep. Prog. Phys. 75, 086401 (2012)

    Google Scholar 

  50. Eggleton, B.J., Slusher, R.E., de Sterke, C.M., Krug, P.A., Sipe, J.E.: Bragg grating solitons. Phys. Rev. Lett. 76, 1627 (1996)

    Google Scholar 

  51. Mandelik, D., Morandotti, R., Aitchison, J.S., Silberberg, Y.: Gap solitons in waveguide arrays. Phys. Rev. Lett. 92, 093904 (2004)

    Google Scholar 

  52. Kartashov, Y.V., Vysloukh, V.A., Torner, L.: Surface gap solitons. Phys. Rev. Lett. 96, 073901 (2006)

    Google Scholar 

  53. Szameit, A., Kartashov, Y.V., Dreisow, F., Pertsch, T., Nolte, S., Tünnermann, A., Torner, L.: Observation of two-dimensional surface solitons in asymmetric waveguide arrays. Phys. Rev. Lett. 98, 173903 (2007)

    Google Scholar 

  54. Peleg, O., Bartal, G., Freedman, B., Manela, O., Segev, M., Christodoulides, D.N.: Conical diffraction and gap solitons in honeycomb photonic lattices. Phys. Rev. Lett. 98, 103901 (2007)

    Google Scholar 

  55. Fleischer, J.W., Segev, M., Efremidis, N.K., Christodoulides, D.N.: Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147 (2003)

    Google Scholar 

  56. Baizakov, B.B., Malomed, B.A., Salerno, M.: Multidimensional solitons in periodic potentials. Europhys. Lett. 63, 642 (2003)

    MATH  Google Scholar 

  57. Brazhnyi, V.A., Konotop, V.V.: Theory of nonlinear matter waves in optical lattices. Mod. Phys. Lett. B 18, 627 (2004)

    MATH  Google Scholar 

  58. Eiermann, B., Anker, Th, Albiez, M., Taglieber, M., Treutlein, P., Marzlin, K.-P., Oberthaler, M.K.: Bright Bose–Einstein gap solitons of atoms with repulsive interaction. Phys. Rev. Lett. 92, 230401 (2004)

    Google Scholar 

  59. Morsch, O., Oberthaler, M.: Dynamics of Bose–Einstein condensates in optical lattices. Rev. Mod. Phys. 78, 179 (2006)

    Google Scholar 

  60. Zeng, L., Zeng, J.: Gap-type dark localized modes in a Bose–Einstein condensate with optical lattices. Adv. Photonics 1, 046004 (2019)

    Google Scholar 

  61. Sakaguchi, H., Malomed, B.A.: Matter-wave solitons in nonlinear optical lattices. Phys. Rev. E 72, 046610 (2005)

    MathSciNet  Google Scholar 

  62. Theocharis, G., Schmelcher, P., Kevrekidis, P.G., Frantzeskakis, D.J.: Matter-wave solitons of collisionally inhomogeneous condensates. Phys. Rev. A 72, 033614 (2005)

    Google Scholar 

  63. Sivan, Y., Fibich, G., Weinstein, M.I.: Waves in nonlinear lattices: ultrashort optical pulses and Bose–Einstein condensates. Phys. Rev. Lett. 97, 193902 (2006)

    Google Scholar 

  64. Belmonte-Beitia, J., Pérez-García, V.M., Vekslerchik, V., Torres, P.J.: Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities. Phys. Rev. Lett. 98, 064102 (2007)

    Google Scholar 

  65. Kartashov, Y.V., Vysloukh, V.A., Torner, L.: Soliton modes, stability, and drift in optical lattices with spatially modulated nonlinearity. Opt. Lett. 33, 1747 (2008)

    Google Scholar 

  66. Kartashov, Y.V., Malomed, B.A., Vysloukh, V.A., Torner, L.: Vector solitons in nonlinear lattices. Opt. Lett. 34, 3625 (2009)

    Google Scholar 

  67. Abdullaev, FKh, Gammal, A., Salerno, M., Tomio, L.: Localized modes of binary mixtures of Bose–Einstein condensates in nonlinear optical lattices. Phys. Rev. A 77, 023615 (2008)

    Google Scholar 

  68. Lebedev, M.E., Alfimov, G.L., Malomed, B.A.: Stable dipole solitons and soliton complexes in the nonlinear Schrödinger equation with periodically modulated nonlinearity. Chaos 26, 073110 (2016)

    MathSciNet  MATH  Google Scholar 

  69. Wen, Z., Yan, Z.: Solitons and their stability in the nonlocal nonlinear Schrödinger equation with \(\cal{PT}\)-symmetric potentials. Chaos 27, 053105 (2017)

    MathSciNet  MATH  Google Scholar 

  70. Zezyulin, D.A., Konotop, V.V.: Solitons in a Hamiltonian \(\cal{PT}\)-symmetric coupler. J. Phys. A Math. Theor. 51, 015206 (2018)

    MathSciNet  MATH  Google Scholar 

  71. Kartashov, Y.V., Vysloukh, V.A., Torner, L.: Power-dependent shaping of vortex solitons in optical lattices with spatially modulated nonlinear refractive index. Opt. Lett. 33, 2173 (2008)

    Google Scholar 

  72. Sakaguchi, H., Malomed, B.A.: Solitons in combined linear and nonlinear lattice potentials. Phys. Rev. A 81, 013624 (2010)

    Google Scholar 

  73. Zeng, J., Malomed, B.A.: Two-dimensional solitons and vortices in media with incommensurate linear and nonlinear lattice potentials. Phys. Scr. T149, 014035 (2012)

    Google Scholar 

  74. Shi, J., Zeng, J.: Self-trapped spatially localized states in combined linear-nonlinear periodic potentials. Front. Phys. (submitted)

  75. Borovkova, O.V., Kartashov, Y.V., Torner, L., Malomed, B.A.: Bright solitons from defocusing nonlinearities. Phys. Rev. E 84, 035602(R) (2011)

    Google Scholar 

  76. Borovkova, O.V., Kartashov, Y.V., Malomed, B.A., Torner, L.: Algebraic bright and vortex solitons in defocusing media. Opt. Lett. 36, 3088 (2011)

    Google Scholar 

  77. Zeng, J., Malomed, B.A.: Bright solitons in defocusing media with spatial modulation of the quintic nonlinearity. Phys. Rev. E 86, 036607 (2012)

    Google Scholar 

  78. Kartashov, Y.V., Lobanov, V.E., Malomed, B.A., Torner, L.: Asymmetric solitons and domain walls supported by inhomogeneous defocusing nonlinearity. Opt. Lett. 37, 5000 (2012)

    Google Scholar 

  79. Young-S, L.E., Salasnich, L., Malomed, B.A.: Self-trapping of Fermi and Bose gases under spatially modulated repulsive nonlinearity and transverse confinement. Phys. Rev. A 87, 043603 (2013)

    Google Scholar 

  80. Cardoso, W.B., Zeng, J., Avelar, A.T., Bazeia, D., Malomed, B.A.: Bright solitons from the nonpolynomial Schrödinger equation with inhomogeneous defocusing nonlinearities. Phys. Rev. E 88, 025201 (2013)

    Google Scholar 

  81. Driben, R., Kartashov, Y.V., Malomed, B.A., Meier, T., Torner, L.: Soliton gyroscopes in media with spatially growing repulsive nonlinearity. Phys. Rev. Lett. 112, 020404 (2014)

    Google Scholar 

  82. Kartashov, Y.V., Malomed, B.A., Shnir, Y., Torner, L.: Twisted toroidal vortex solitons in inhomogeneous media with repulsive nonlinearity. Phys. Rev. Lett. 113, 264101 (2014)

    Google Scholar 

  83. Driben, R., Kartashov, Y.V., Malomed, B.A., Meier, T., Torner, L.: Three-dimensional hybrid vortex solitons. New J. Phys. 16, 063035 (2014)

    MathSciNet  Google Scholar 

  84. Kevrekidis, P.G., Malomed, B.A., Saxena, A., Bishop, A.R., Frantzeskakis, D.J.: Solitons and vortices in two-dimensional discrete nonlinear Schrödinger systems with spatially modulated nonlinearity. Phys. Rev. E 91, 043201 (2015)

    MathSciNet  Google Scholar 

  85. Driben, R., Dror, N., Malomed, B.A., Meier, T.: Multipoles and vortex multiplets in multidimensional media with inhomogeneous defocusing nonlinearity. New J. Phys. 17, 083043 (2015)

    Google Scholar 

  86. Zeng, J., Malomed, B.A.: Localized dark solitons and vortices in defocusing media with spatially inhomogeneous nonlinearity. Phys. Rev. E 95, 052214 (2017)

    MathSciNet  Google Scholar 

  87. Huang, C., Ye, Y., Liu, S., He, H., Pang, W., Malomed, B.A., Li, Y.: Excited states of two-dimensional solitons supported by spin–orbit coupling and field-induced dipole–dipole repulsion. Phys. Rev. A 97, 013636 (2018)

    Google Scholar 

  88. Zeng, L., Zeng, J., Kartashov, Y.V., Malomed, B.A.: Purely Kerr nonlinear model admitting flat-top solitons. Opt. Lett. 44, 1206 (2019)

    Google Scholar 

  89. Zeng, L., Zeng, J.: Gaussian-like and flat-top solitons of atoms with spatially modulated repulsive interactions. J. Opt. Soc. Am. B 36, 002278 (2019)

    Google Scholar 

  90. Vakhitov, M., Kolokolov, A.: Stationary solutions of the wave equation in a medium with nonlinearity saturation. Radiophys. Quantum Electron. 16, 783 (1973)

    Google Scholar 

  91. Yang, J.: Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM, Philadelphia (2010)

    MATH  Google Scholar 

  92. Abdullaev, FKh, Salerno, M.: Gap-Townes solitons and localized excitations in low-dimensional Bose–Einstein condensates in optical lattices. Phys. Rev. A 72, 033617 (2005)

    Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by the Natural Science Foundation of China (Project Nos. 61690222, 61690224), and by the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Project No. 2016357).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, L., Zeng, J. One-dimensional gap solitons in quintic and cubic–quintic fractional nonlinear Schrödinger equations with a periodically modulated linear potential. Nonlinear Dyn 98, 985–995 (2019). https://doi.org/10.1007/s11071-019-05240-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05240-x

Keywords