Abstract
Accurate electric load forecasting can provide critical support to makers of energy policy and managers of power systems. The support vector regression (SVR) model can be hybridized with novel meta-heuristic algorithms not only to identify fluctuations and the nonlinear tendencies of electric loads, but also to generate satisfactory forecasts. However, many such algorithms have numerous drawbacks, such as a low population diversity and trapping at local optima, which are problems of premature convergence. Accordingly, approaches to increase the accuracy of forecasting must be developed. In this investigation, quantum computing mechanism is used to quantamize dragonfly behaviors to enhance the searching effectiveness of the dragonfly algorithm, namely QDA. In addition, conducting the data preprocessing by the complete ensemble empirical mode decomposition adaptive noise (CEEMDAN) is useful to improve the forecasting accuracy. Thus, a new electric load forecasting model, the CEEMDAN-SVRQDA model, that combines the CEEMDAN and hybridizes the QDA with an SVR model, is proposed to provide more accurate forecasts. Two numerical examples from the Tokyo Electric Power Company (Japan) and the National Grid (UK) demonstrate that the proposed model outperforms other models.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ahmad, T., Chen, H.: Nonlinear autoregressive and random forest approaches to forecasting electricity load for utility energy management systems. Sustain. Cities Soc. 39, 460–473 (2019). https://doi.org/10.1016/j.scs.2018.12.013
Xiao, L., Shao, W., Liang, T., Wang, C.: A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting. Appl. Energy 167, 135–153 (2016). https://doi.org/10.1016/j.apenergy.2016.01.050
Fan, G.F., Peng, L.L., Zhao, X., Hong, W.C.: Applications of hybrid EMD with PSO and GA for an SVR-based load forecasting model. Energies 10, 1713 (2017). https://doi.org/10.3390/en10111713
O’Connell, N., Pinson, P., Madsen, H., O’Malley, M.: Benefits and challenges of electrical demand response: a critical review. Renew. Sustain. Energy Rev. 39, 686–699 (2014). https://doi.org/10.1016/j.rser.2014.07.098
Hong, W.C., Dong, Y., Zhang, W.Y., Chen, L.Y., Panigrahi, B.K.: Cyclic electric load forecasting by seasonal SVR with chaotic genetic algorithm. Int. J. Electr. Power Energy Syst. 44, 604–614 (2013). https://doi.org/10.1016/j.ijepes.2012.08.010
Fan, G., Peng, L.L., Hong, W.C., Sun, F.: Electric load forecasting by the SVR model with differential empirical mode decomposition and auto regression. Neurocomputing 173, 958–970 (2016). https://doi.org/10.1016/j.neucom.2015.08.051
Sen, P., Roy, M., Pal, P.: Application of ARIMA for forecasting energy consumption and GHG emission: a case study of an Indian pig iron manufacturing organization. Energy 116, 1031–1038 (2016). https://doi.org/10.1016/j.energy.2016.10.068
Yang, D., Sharma, V., Ye, Z., Lim, L.I., Zhao, L., Aryaputera, A.W.: Forecasting of global horizontal irradiance by exponential smoothing, using decompositions. Energy 81, 111–119 (2015). https://doi.org/10.1016/j.energy.2014.11.082
Li, Y., Jiang, X., Zhu, H., He, X., Peeta, S.: Multiple measures-based chaotic time series for traffic flow prediction based on Bayesian theory. Nonlinear Dyn. 85, 179–194 (2016). https://doi.org/10.1007/s11071-016-2677-5
Takeda, H., Tamura, Y., Sato, S.: Using the ensemble Kalman filter for electricity load forecasting and analysis. Energy 104, 184–198 (2016). https://doi.org/10.1016/j.energy.2016.03.070
Lebotsa, M.E., Sigauke, C., Bere, A., Fildes, R., Boylan, J.E.: Short term electricity demand forecasting using partially linear additive quantile regression with an application to the unit commitment problem. Appl. Energy 222, 104–118 (2018). https://doi.org/10.1016/j.apenergy.2018.03.155
Kelo, S., Dudul, S.: A wavelet Elman neural network for short-term electrical load prediction under the influence of temperature. Int. J. Electr. Power Energy Syst. 43, 1063–1071 (2012). https://doi.org/10.1016/j.ijepes.2012.06.009
Singh, P., Dwivedi, P.: Integration of new evolutionary approach with artificial neural network for solving short term load forecast problem. Appl. Energy 217, 537–549 (2018). https://doi.org/10.1016/j.apenergy.2018.02.131
Hernández, L., Baladrón, C., Aguiar, J.M., Carro, B., Sánchez-Esguevillas, A., Lloret, J.: Artificial neural networks for short-term load forecasting in microgrids environment. Energy 75, 252–264 (2014). https://doi.org/10.1016/j.energy.2014.07.065
Lusis, P., Khalilpour, K.R., Andrew, L., Liebman, A.: Short-term residential load forecasting: impact of calendar effects and forecast granularity. Appl. Energy 205, 654–669 (2017). https://doi.org/10.1016/j.apenergy.2017.07.114
Duan, Q., Liu, J., Zhao, D.: Short term electric load forecasting using an automated system of model choice. Int. J. Electr. Power Energy Syst. 91, 92–100 (2017). https://doi.org/10.1016/j.ijepes.2017.03.006
Zhang, W., Zhang, S., Zhang, S.: Two-factor high-order fuzzy-trend FTS model based on BSO–FCM and improved KA for TAIEX stock forecasting. Nonlinear Dyn. 94, 1429–1446 (2018). https://doi.org/10.1007/s11071-018-4433-5
Lou, C.W., Dong, M.C.: A novel random fuzzy neural networks for tackling uncertainties of electric load forecasting. Int. J. Electr. Power Energy Syst. 73, 34–44 (2015). https://doi.org/10.1016/j.ijepes.2015.03.003
Hua, J.C., Noorian, F., Moss, D., Leong, P.H.W., Gunaratne, G.H.: High-dimensional time series prediction using kernel-based Koopman mode regression. Nonlinear Dyn. 90, 1785–1806 (2017). https://doi.org/10.1007/s11071-017-3764-y
Fan, G.F., Peng, L.L., Hong, W.C.: Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel regression model. Appl. Energy 224, 13–33 (2018). https://doi.org/10.1016/j.apenergy.2018.04.075
Zhai, M.Y.: A new method for short-term load forecasting based on fractal interpretation and wavelet analysis. Int. J. Electr. Power Energy Syst. 69, 241–245 (2015). https://doi.org/10.1016/j.ijepes.2014.12.087
Niu, M., Sun, S., Wu, J., Yu, L., Wang, J.: An innovative integrated model using the singular spectrum analysis and nonlinear multi-layer perceptron network optimized by hybrid intelligent algorithm for short-term load forecasting. Appl. Math. Model. 40, 4079–4093 (2016). https://doi.org/10.1016/j.apm.2015.11.030
Boubaker, S.: Identification of nonlinear Hammerstein system using mixed integer-real coded particle swarm optimization: application to the electric daily peak-load forecasting. Nonlinear Dyn. 90, 797–814 (2017). https://doi.org/10.1007/s11071-017-3693-9
Aras, S., Kocakoç, İ.D.: A new model selection strategy in time series forecasting with artificial neural networks: IHTS. Neurocomputing 174, 974–987 (2016). https://doi.org/10.1016/j.neucom.2015.10.036
Panapakidis, I.P., Dagoumas, A.S.: Day-ahead electricity price forecasting via the application of artificial neural network based models. Appl. Energy 172, 132–151 (2016). https://doi.org/10.1016/j.apenergy.2016.03.089
Lahmiri, S.: Minute-ahead stock price forecasting based on singular spectrum analysis and support vector regression. Appl. Math. Comput. 320, 444–451 (2018). https://doi.org/10.1016/j.amc.2017.09.049
Hong, W.C.: Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm. Neurocomputing 74, 2096–2107 (2011). https://doi.org/10.1016/j.neucom.2010.12.032
Hong, W.C.: Application of seasonal SVR with chaotic immune algorithm in traffic flow forecasting. Neural Comput. Appl. 21, 583–593 (2012). https://doi.org/10.1007/s00521-010-0456-7
Hong, W.C., Dong, Y., Zheng, F., Wei, S.Y.: Hybrid evolutionary algorithms in a SVR traffic flow forecasting model. Appl. Math. Comput. 217, 6733–6747 (2011). https://doi.org/10.1016/j.amc.2011.01.073
Chen, R., Liang, C.Y., Hong, W.C., Gu, D.X.: Forecasting holiday daily tourist flow based on seasonal support vector regression with adaptive genetic algorithm. Appl. Soft Comput. 26, 435–443 (2015). https://doi.org/10.1016/j.asoc.2014.10.022
Hong, W.C., Dong, Y., Chen, L.Y., Wei, S.Y.: SVR with hybrid chaotic genetic algorithms for tourism demand forecasting. Appl. Soft Comput. 11, 1881–1890 (2011). https://doi.org/10.1016/j.asoc.2010.06.003
Yu, P.S., Yang, T.C., Chen, S.Y., Kuo, C.M., Tseng, H.W.: Comparison of random forests and support vector machine for real-time radar-derived rainfall forecasting. J. Hydrol. 552, 92–104 (2017). https://doi.org/10.1016/j.jhydrol.2017.06.020
Xiang, Y., Gou, L., He, L., Xia, S., Wang, W.: A SVR-ANN combined model based on ensemble EMD for rainfall prediction. Appl. Soft Comput. 73, 874–883 (2018). https://doi.org/10.1016/j.asoc.2018.09.018
Fan, G., Wang, H., Qing, S., Hong, W.C., Li, H.J.: Support vector regression model based on empirical mode decomposition and auto regression for electric load forecasting. Energies 6, 1887–1901 (2013). https://doi.org/10.3390/en6041887
Geng, J., Huang, M.L., Li, M.W., Hong, W.C.: Hybridization of seasonal chaotic cloud simulated annealing algorithm in a SVR-based load forecasting model. Neurocomputing 151, 1362–1373 (2015). https://doi.org/10.1016/j.neucom.2014.10.055
Hong, W.C., Dong, Y., Lai, C.Y., Chen, L.Y., Wei, S.Y.: SVR with hybrid chaotic immune algorithm for seasonal load demand forecasting. Energies 4, 960–977 (2011). https://doi.org/10.3390/en4060960
Saremi, S., Mirjalili, S., Lewis, A.: Grasshopper optimization algorithm: theory and application. Adv. Eng. Softw. 105, 30–47 (2017). https://doi.org/10.1016/j.advengsoft.2017.01.004
Ks, S.R., Murugan, S.: Memory based hybrid dragonfly algorithm for numerical optimization problems. Expert Syst. Appl. 83, 63–78 (2017). https://doi.org/10.1016/j.eswa.2017.04.033
Prawin, J., Rao, A.R.M., Lakshmi, K.: Nonlinear parametric identification strategy combining reverse path and hybrid dynamic quantum particle swarm optimization. Nonlinear Dyn. 84, 797–815 (2017). https://doi.org/10.1007/s11071-015-2528-9
Huang, M.L.: Hybridization of chaotic quantum particle swarm optimization with SVR in electric demand forecasting. Energies 9, 426 (2016). https://doi.org/10.3390/en9060426
Peng, L.L., Fan, G.F., Huang, M.L., Hong, W.C.: Hybridizing DEMD and quantum PSO with SVR in electric load forecasting. Energies 9, 221 (2016). https://doi.org/10.3390/en9030221
Li, M.W., Geng, J., Wang, S., Hong, W.C.: Hybrid chaotic quantum bat algorithm with SVR in electric load forecasting. Energies 10, 2180 (2017). https://doi.org/10.3390/en10122180
Li, M.W., Geng, J., Hong, W.C., Zhang, Y.: Hybridizing chaotic and quantum mechanisms and fruit fly optimization algorithm with least squares support vector regression model in electric load forecasting. Energies 11, 2226 (2018). https://doi.org/10.3390/en11092226
Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27, 1053–1073 (2016). https://doi.org/10.1007/s00521-015-1920-1
Chen, B.J., Chang, M.W.: Load forecasting using support vector machines: a study on EUNITE competition 2001. IEEE Trans. Power Syst. 19(4), 1821–1830 (2004). https://doi.org/10.1109/TPWRS.2004.835679
Pai, P.F., Hong, W.C.: Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Convers. Manag. 46(17), 2669–2688 (2005). https://doi.org/10.1016/j.enconman.2005.02.004
Pai, P.F., Hong, W.C.: Forecasting regional electricity load based on recurrent support vector machines with genetic algorithms. Electr. Power Syst. Res. 74(3), 417–425 (2005). https://doi.org/10.1016/j.epsr.2005.01.006
Dey, S., Bhattacharyya, S., Maulik, U.: Quantum inspired genetic algorithm and particle swarm optimization using chaotic map model based interference for gray level image thresholding. Swarm Evol. Comput. 15, 38–57 (2014). https://doi.org/10.1016/j.swevo.2013.11.002
Cortés, M.A.D., Ortega-Sánchez, N., Hinojosa, S., Oliva, D., Cuevas, E., Rojas, R., Demin, A.: A multi-level thresholding method for breast thermograms analysis using dragonfly algorithm. Infrared Phys. Technol. 93, 346–361 (2018). https://doi.org/10.1016/j.infrared.2018.08.007
Mafarja, M., Aljarah, I., Heidari, A.A., Faris, H., Fournier-Viger, P., Li, X., Mirjalili, S.: Binary dragonfly optimization for feature selection using time-varying transfer functions. Knowl. Based Syst. 161, 185–204 (2018). https://doi.org/10.1016/j.knosys.2018.08.003
Jafari, M., Chaleshtari, M.H.B.: Using dragonfly algorithm for optimization of orthotropic infinite plates with a quasi-triangular cut-out. Eur. J. Mech. A. Solids 66, 1–14 (2017). https://doi.org/10.1016/j.euromechsol.2017.06.003
Ghanem, W.A.H.M., Jantan, A.: A cognitively inspired hybridization of artificial bee colony and dragonfly algorithms for training multi-layer perceptrons. Cogn. Comput. 10(6), 1096–1134 (2018). https://doi.org/10.1007/s12559-018-9588-3
Hida, T.: Brownian Motion. Springer, New York (1980). https://doi.org/10.1007/978-1-4612-6030-1
El-Nabulsi, R.A.: The fractional Boltzmann transport equation. Comput. Math. Appl. 62(3), 1568–1575 (2011). https://doi.org/10.1016/j.camwa.2011.03.040
Hakli, H., Uguz, H.: A novel particle swarm optimization algorithm with Levy flight. Appl. Soft Comput. 23, 333–345 (2014). https://doi.org/10.1016/j.asoc.2014.06.034
Yang, X.: Firefly algorithm, Levy flights and global optimization. In: Bramer, M., Ellis, R., Petridis, M. (eds.) Research and Development in Intelligent Systems, vol. XXVI, pp. 209–218. Springer, London (2010). https://doi.org/10.1007/978-1-84882-983-1_15
Heidari, A., Pahlavani, P.: An efficient modified grey wolf optimizer with Lévy flight for optimization tasks. Appl. Soft Comput. 60, 115–134 (2017). https://doi.org/10.1016/j.asoc.2017.06.044
Barthelemy, P., Bertolotti, J., Wiersma, D.S.: A Lévy flight for light. Nature 453, 495–498 (2008). https://doi.org/10.1038/nature06948
Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A Math. Phys. Eng. Sci. 454(1971), 903–995 (1998). https://doi.org/10.1098/rspa.1998.0193
Wu, Z., Huang, N.E.: Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1, 1–41 (2009). https://doi.org/10.1142/S1793536909000047
Wang, J., Luo, Y., Tang, L., Ge, P.: A new weighted CEEMDAN-based prediction model: an experimental investigation of decomposition and non-decomposition approaches. Knowl. Based Syst. 160, 188–199 (2018). https://doi.org/10.1016/j.enconman.2017.01.022
Yeh, J.R., Shieh, J.S., Huang, N.E.: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method. Adv. Adapt. Data Anal. 2, 135–156 (2010). https://doi.org/10.1142/S1793536910000422
Torres, ME., Colominas, MA., Schlotthauer, G., Flandrin, P.: A complete ensemble empirical mode decomposition with adaptive noise. In: Proceeding of the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 4144–4147 (2011) https://doi.org/10.1109/ICASSP.2011.5947265
Carvalho, F.A.T.D., Neto, E.A.L., Ferreira, M.R.P.: A robust regression method based on exponential-type kernel functions. Neurocomputing 234, 58–74 (2017). https://doi.org/10.1016/j.neucom.2016.12.035
Ranjini, K.S.S., Murugan, S.: Memory based hybrid dragonfly algorithm for numerical optimization problems. Expert Syst. Appl. 83, 63–78 (2017). https://doi.org/10.1016/j.eswa.2017.04.033
National Grid UK. https://www.nationalgrid.com/uk
Tokyo Electric Power Company. https://www4.tepco.co.jp/index-e.html
Derrac, J., García, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1, 3–18 (2011). https://doi.org/10.1016/j.swevo.2011.02.002
Acknowledgements
This research was conducted with the support from Jiangsu Normal University (No. 9213618401), China.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhang, Z., Hong, WC. Electric load forecasting by complete ensemble empirical mode decomposition adaptive noise and support vector regression with quantum-based dragonfly algorithm. Nonlinear Dyn 98, 1107–1136 (2019). https://doi.org/10.1007/s11071-019-05252-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-019-05252-7