Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Periodization strategy may fail in high dimensions

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We discuss periodization of smooth functions f of d variables for approximation of multivariate integrals. The benefit of periodization is that we may use lattice rules, which have recently seen significant progress. In particular, we know how to construct effectively a generator of the rank-1 lattice rule with n points whose worst case error enjoys a nearly optimal bound C d,p n −p. Here C d,p is independent of d or depends at most polynomially on d, and p can be arbitrarily close to the smoothness of functions belonging to a weighted Sobolev space with an appropriate condition on the weights. If F denotes the periodization for f then the error of the lattice rule for a periodized function F is bounded by C d,p n −p∣∣F∣∣ with the norm of F given in the same Sobolev space. For small or moderate d, the norm of F is not much larger than the norm of f. This means that for small or moderate d, periodization is successful and allows us to use optimal properties of lattice rules also for non-periodic functions. The situation is quite different if d is large since the norm of F can be exponentially larger than the norm of f. This can already be seen for f = 1. Hence, the upper bound of the worst case error of the lattice rule for periodized functions is quite bad for large d. We conjecture not only that this upper bound is bad, but also that all lattice rules fail for large d. That is, if we fix the number of points n and let d go to infinity then the worst case error of any lattice rule is bounded from below by a positive constant independent of n. We present a number of cases suggesting that this conjecture is indeed true, but the most interesting case, when the sum of the weights of the corresponding Sobolev space is bounded in d, remains open.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover Publications, New York (1964)

    MATH  Google Scholar 

  2. Aronszajn, N.: Theory of reproducing kernels. Trans. Amer. Math. Soc. 68, 337–404 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beckers, M., Haegemans, A.: Transformation of integrands using lattice rules. In: Espelid, T.O., Genz, A.C. (eds.) Numerical Integration: Recent Developments, Software and Applications, pp. 329–340. Kluwer Academic Publishers, Dordrecht (1992)

    Google Scholar 

  4. Dick, J.: On the convergence rate of the component-by-component construction of good lattice rules. J. Complexity 20, 493–522 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Dick, J., Pillichshammer, F.: Strong tractability of multivariate integration of arbitrary high order using digitally shifted polynomial lattice rules. J. Complexity 23, 436–453 (2007)

    Article  Google Scholar 

  6. Dick, J., Sloan, I.H., Wang, X., Woźniakowski, H.: Liberating the weights. J. Complexity 20, 593–623 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dick, J., Sloan, I.H., Wang, X., Woźniakowski, H.: Good lattice rules in weighted Korobov spaces with general weights. Numer. Math. 103, 63–97 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hickernell, F.J.: Obtaining O(N  − 2 + ε) convergence for lattice quadrature rules. In: Fang, K.T., Hickernell, F.J., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2000, pp. 274–289 Springer-Verlag, Berlin (2002)

    Google Scholar 

  9. Hickernell, F.J., Woźniakowski, H.: Tractability of multivariate integration for periodic functions. J. Complexity 17, 660–682 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Korobov, N.M.: Number-theoretic Methods in Approximate Analysis. Fizmatgiz, Moscow (1963)

    Google Scholar 

  11. Kuo, F.Y.: Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces. J. Complexity 19, 301–320 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kuo, F.Y., Sloan, I.H., Wasilkowski, G.W., Woźniakowski, H.: On decompositions of multivariate functions (in preparation)

  13. Laurie, D.: Periodizing transformations for numerical integration J. Comput. Appl. Math. 66, 337–344 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Novak, E., Woźniakowski, H.: Intractability results for integration and discrepancy J. Complexity 17, 388–411 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nuyens, D., Cools, R.: Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comp. 75, 903–920 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sidi, A.: A new variable transformation for numerical integration. Int. Series Numer. Math. 112, 359–373 (1993)

    MathSciNet  Google Scholar 

  17. Sidi, A.: Extension of a class of periodizing variable transformations for numerical integration. Math. Comp. 75, 327–343 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford University Press, Oxford (1994)

    MATH  Google Scholar 

  19. Sloan, I.H., Kuo, F.Y., Joe, S.: Constructing randomly shifted lattice rules in weighted Sobolev spaces. SIAM J. Numer. Anal. 40, 1650–1665 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sloan, I.H., Reztsov, A.V.: Component-by-component construction of good lattice rules. Math. Comp. 71, 263–273 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Sloan, I.H., Wang, X., Woźniakowski, H.: Finite-order weights imply tractability of multivariate integration. J. Complexity 20, 46–74 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Sloan, I.H., Woźniakowski, H.: When are quasi-Monte Carlo algorithms efficient for high dimensional integrals?. J. Complexity 14, 1–33 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Sloan, I.H., Woźniakowski, H.: Tractability of multivariate integration for weighted Korobov classes. J. Complexity 17, 697–721 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sloan, I.H., Woźniakowski, H.: Tractability of integration in non-periodic and periodic weighted tensor product Hilbert spaces. J. Complexity 18, 479–499 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wasilkowski, G.W., Woźniakowski, H.: Polynomial-time algorithms for multivariate linear problems with finite-order weights: worst case setting. Found. Comput. Math. 5, 451–491 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances Y. Kuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, F.Y., Sloan, I.H. & Woźniakowski, H. Periodization strategy may fail in high dimensions. Numer Algor 46, 369–391 (2007). https://doi.org/10.1007/s11075-007-9145-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-007-9145-8

Keywords

Mathematics Subject Classifications (2000)