Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

(0, 2) Pál-type interpolation on a circle in the complex plane involving Möbius transforms

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We study the regularity of certain (0, 2) Pál-type interpolation problems involving the Möbius transforms of the zeros of z 2nρ 2n to the circle ∣z∣ = ρ′.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kiš, O.: Notes on interpolation. Acta Math. Acad. Sci. Hung. 11, 49–64 (1960) (in Russian)

    Article  Google Scholar 

  2. Pál, L.G.: A new modification of Hermite-Fejér interpolation. Anal. Math 1, 197–205 (1975)

    Article  MathSciNet  Google Scholar 

  3. de Bruin, M.G., Sharma, A., Szabados, J.: Birkhoff type interpolation on petrurbed roots of unity. In memory of: Varma, A.K., Govil, N.K., et al. (eds.) Approximation Theory, pp. 167–179. Marcel Dekker (1998)

  4. de Bruin, M.G., Sharma, A.: Birkhoff interpolation on perturbed roots of unity on the unit circle. J. Nat. Acad. Math. India 11, 83–87 (1997)

    MATH  MathSciNet  Google Scholar 

  5. de Bruin, M.G., Dikshit, H.P., Sharma, A.: Birkhoff interpolation on unity and on Möbius transform of the roots of unity. Numer. Algorithms 23, 115–125 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brueck, R.: Lagrange interpolation in non-uniformly distributed nodes on the unit circle. Analysis 16, 273–282 (1996)

    MATH  MathSciNet  Google Scholar 

  7. Lorentz, G.G., Riemenschneider, S.D., Jetter, K.: Birkhoff Interpolation. Addison Wisley, MA (1983)

    MATH  Google Scholar 

  8. Bokhari, M.A., Dikshit, H.P., Sharma, A.: Birkhoff interpolation on some perturbed roots of unity: revisisted. Numer. Algorithms 25, 47–62 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dikshit, H.P.: Birkhoff interpolation on some perturbed roots of unity. Nonlinear Anal. Forum 6, 97–102 (2001)

    MATH  MathSciNet  Google Scholar 

  10. de Bruin, M.G.: Regularity of some ‘incomplete’ Pál-type interpolation problems. J. Comput. Appl. Math. 145, 407–415 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. de Bruin, M.G., Dikshit, H.P.: Birkhoff interpolation on nonuniformly distributed points. J. Indian Math. Soc. 69, 81–101 (2002)

    MATH  MathSciNet  Google Scholar 

  12. Dikshit, H.P.: Interpolation on nonuniformly distributed points in the complex plane, In: Dikshit, H.P., Jain, P.K. (eds.) Analysis and Applications, Proceedings of a Conference, pp. 61–91. Narosa Publishing (2002)

  13. Dikshit, H.P.: Pál-type interpolation on nonuniformly distributed nodes on the unit circle. J. Comput. Appl. Math. 155, 253–261 (2003)

    MATH  MathSciNet  Google Scholar 

  14. de Bruin, M.G., Dikshit, H.P.: Pál-type interpolation on nonuniformly distributed points. Numer. Algorithms 40, 1–16 (2005)

    Article  MathSciNet  Google Scholar 

  15. de Bruin, M.G.: (0, m) Pál-type interpolation on the Möbius transform of roots of unity. J. Comput. Appl. Math. 178, 147–153 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. de Bruin, M.G.: (0, m) Pál-type interpolation: interchanging value-and derivative-nodes. J. Comput. Appl. Math. 179, 175–184 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Pathak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandloi, A., Pathak, A.K. (0, 2) Pál-type interpolation on a circle in the complex plane involving Möbius transforms. Numer Algor 47, 181–190 (2008). https://doi.org/10.1007/s11075-008-9165-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-008-9165-z

Keywords

Mathematics Subject Classification (2000)