Abstract
A derivative free iterative method for approximating a solution of nonlinear least squares problems is studied first in Shakhno and Gnatyshyn (Appl Math Comput 161:253–264, 2005). The radius of convergence is determined as well as usable error estimates. We show that this method is faster than its Secant analogue examined in Shakhno and Gnatyshyn (Appl Math Comput 161:253–264, 2005). Numerical example is also provided in this paper.
Similar content being viewed by others
References
Argyros, I.K.: A unifying local–semilocal convergence analysis and applications for two–point Newton–like methods in Banach space. J. Math. Anal. Appl. 298, 374–397 (2004)
Argyros, I.K.: On a two–point Newton–like method of convergent order two. Int. J. Comput. Math. 82, 219–233 (2005)
Argyros, I.K.: A Kantorovich–type analysis for a fast iterative method for solving nonlinear equations. J. Math. Anal. Appl. 332, 97–108 (2007)
Argyros, I.K.: Computational theory of iterative methods. In: Chui, C.K., Wuytack, L. (eds.) Series: Studies in Computational Mathematics, vol. 15. Elsevier Publ. Co., New York (2007)
Argyros, I.K.: Convergence domains for some iterative processes in Banach spaces using outer or generalized inverses. J. Comput. Anal. Appl. 1, 87–104 (1999)
Argyros, I.K., Ren, H.: Local convergence of a Secant–type method for solving least square problems. Appl. Math. Comput. 217, 3816–3824 (2010)
Ben-Israel, A., Greville, N.E.: Generalized Inverses: Theory and Applications, Pure and Applied Mathematics, Wiley-interscience. John Wiley and Sons, London (1974)
Brown, K.M., Dennis, J.M., Jr.: Derivative free analogues of the Levenberg–Marquardt and Gauss algorithms for nonlinear least squares approximation. Numer. Math. 18, 289–297 (1972)
Chen, X., Nashed, M.Z.: Convergence of Newton–like methods for singular operator equations using outer inverses. Numer. Math. 66, 235–257 (1993)
Dennis, J.M., Jr., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice–Hall, New York (1983)
More, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7, 17–41 (1981)
Mühlig, H.: Lösung praktischer Approximationsaufgaben durch parameteridentifikation. ZAMM 73, T837–839 (1993)
Ortega, J.M., Rheinbolt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)
Potra, F.A.: On an iterative algorithm of order 1.839... for solving nonlinear operator equations. Numer. Funct. Anal. Optim. 7(1), 75–106 (1984–1985)
Ren, H.M., Wu, Q.B.: Convergence ball of a modified secant method with convergence order 1.839.... Appl. Math. Comput. 188, 281–285 (2007)
Schwetlick, H.: Numerische Lösung nichtlinearer Gleichungen. R. Oldenburg Verlag, Munchen Wien (1979)
Shakhno, S.M., Gnatyshyn, O.P.: Iterative-difference methods for solving nonlinear leastsquares problem. In: Arkeryd, L., Bergh, J., Brenner, P., Petersson, R. (eds.) Progress in Industrial Mathematics at ECMI’98, pp. 287–294. Teubner, Stuttgart (1999)
Shakhno, S.M.: About the difference method with quadratic convergence for solving nonlinear operator equations. PAMM 4(1), 650–651 (2004)
Shakhno, S.M., Gnatyshyn, O.P.: On an iterative algorithm of order 1.839... for solving the nonlinear least squares problems. Appl. Math. Comput. 161, 253–264 (2005)
Ulm, S.: Iteration methods with divided differences of the second order (in Russian). Dokl. Akad. Nauk SSSR. 158, 55–58 (1964)
Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Clarendon, Oxford (1965)
Yamamoto, T.: Uniqueness of the solution in a Kantorovich-type theorem of HauBler for the Gauss-Newton method. Jpn. J. Appl. Math. 6, 77–81 (1989)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ren, H., Argyros, I.K. & Hilout, S. A derivative free iterative method for solving least squares problems. Numer Algor 58, 555–571 (2011). https://doi.org/10.1007/s11075-011-9470-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-011-9470-9
Keywords
- Nonlinear least squares problem
- Derivative free iterative method
- Divided difference
- Radius of convergence
- Error estimates