Abstract
In this paper, we propose an interesting method for approximating the solution of a two dimensional second kind equation with a smooth kernel using a bivariate quadratic spline quasi-interpolant (abbr. QI) defined on a uniform criss-cross triangulation of a bounded rectangle. We study the approximation errors of this method together with its Sloan’s iterated version and we illustrate the theoretical results by some numerical examples.
Similar content being viewed by others
References
Allouch, C., Sablonnière, P., Sbibih, D., Tahrichi, M.: Superconvergent Nyström and degenerate kernel methods for eigenvalue problems. Appl. Math. Comput. 217(20), 7851–7866 (2011)
Allouch, C., Sablonnière, P., Sbibih, D., Tahrichi, M.: Superconvergent Nyström and degenerate kernel methods for integral equations of the second kind. J. Integral Equ. Appl. http://projecteuclid.org/euclid.jiea/1333560559 (2012)
Atkinson, K.E.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge University Press, Cambridge (1997)
Atkinson, K.E., Graham, I., Sloan, I.: Piecewise continuous collocation for integral equations. SIAM J. Numer. Anal. 20, 172–186 (1983)
Foucher, F., Sablonnière, P.: Quadratic spline quasi-interpolants and collocation methods. Math. Comput. Simul. 79(12), 3455–3465 (2009)
Lamberti, P.: Numerical integration based on bivariate quadratic spline quasi-interpolants on bounded domains. BIT Numer. Math. 49(3), 565–588 (2009)
Kulkarni, R.: Approximate solution of multivariable integral equations of the second kind. J. Integral Equ. Appl. 16(4), 343–374 (2004)
Sablonnière, P.: Quadratic spline quasi-interpolants on bounded domains of ℝd, d = 1,2,3. Rend. Semin. Mat. Univ. Pol. Torino 61, 263–278 (2003)
Sablonnière, P.: BB-coefficients of basic bivariate quadratic splines on rectangular domains with uniform criss-cross triangulations. Prépublication IRMAR 02-56, Rennes (2002)
Sablonnière, P.: BB-coefficients of basic bivariate quadratic splines on rectangular domains with non-uniform criss-cross triangulations. Prépublication IRMAR 03-14, Rennes (2003)
Sablonnière, P.: On some multivariate quadratic spline quasi-interpolants on bounded domains. In: Haussmann, W., Jetter, K., Reimer, M., Stckler, J. (eds.) Modern Developments in Multivariate Approximation. ISNM, vol. 145, pp. 263–278. Birkhäuser, Basel (2003)
Xie, W.-J., Lin, F.-R.: A fast numerical solution method for two dimensional Fredholm integral equations of the second kind. ANM 59, 1709–1719 (2009)
Author information
Authors and Affiliations
Corresponding author
Additional information
Research supported by URAC-05.
Rights and permissions
About this article
Cite this article
Allouch, C., Sablonnière, P. & Sbibih, D. A collocation method for the numerical solution of a two dimensional integral equation using a quadratic spline quasi-interpolant. Numer Algor 62, 445–468 (2013). https://doi.org/10.1007/s11075-012-9598-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-012-9598-2