Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

General linear methods for y′′ = f (y (t))

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper we consider the family of General Linear Methods (GLMs) for the numerical solution of special second order Ordinary Differential Equations (ODEs) of the type y′′ = f(y(t)), with the aim to provide a unifying approach for the analysis of the properties of consistency, zero-stability and convergence. This class of methods properly includes all the classical methods already considered in the literature (e.g. linear multistep methods, Runge–Kutta–Nyström methods, two-step hybrid methods and two-step Runge–Kutta–Nyström methods) as special cases. We deal with formulation of GLMs and present some general results regarding consistency, zero-stability and convergence. The approach we use is the natural extension of the GLMs theory developed for first order ODEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burrage, K., Butcher, J.C.: Non-linear stability for a general class of differential equation methods. BIT 20, 185–203 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Butcher, J.C.: The Numerical Analysis of Ordinary Differential Equations. Runge–Kutta and General Linear Methods. Wiley, New York (1987)

    MATH  Google Scholar 

  3. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley, Chichester (2008)

    Book  MATH  Google Scholar 

  4. Coleman, J.P.: Order Conditions for a class of two–step methods for y′′ = f(x,y). IMA J. Numer. Anal. 23, 197–220 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. D’Ambrosio, R., Ferro, M., Paternoster, B.: Two-step hybrid collocation methods for y′′ = f(x,y). Appl. Math. Lett. 22, 1076–1080 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. D’Ambrosio, R., Paternoster, B.: Runge–Kutta–Nyström stability for a class of general linear methods for y′′ = f(x,y). In: Simos, T.E., Psihoyios, G., Tsitouras, Ch. (eds.) Numerical Analysis and Applied Mathematics. AIP Conference Proceedings, vol. 1168(1), pp. 444–447 (2009)

  7. Hairer, E., Norsett, S.P., Wanner, G.: Solving ordinary differential equations I—nonstiff problems. In: Springer Series in Computational Mathematics, vol. 8. Springer, Berlin (2000)

    Google Scholar 

  8. Hairer, E., Wanner, G.: Solving ordinary differential equations II—stiff and differential–algebraic problems. In: Springer Series in Computational Mathematics, vol. 14. Springer, Berlin (2002)

    Google Scholar 

  9. Henrici, P.: Discrete Variable Methods in Ordinary Differential Equations. Wiley, New York-London (1962)

    MATH  Google Scholar 

  10. Ixaru, L.Gr., Vanden Berghe, G.: Exponential Fitting. Kluwer Academic Publishers, Dordrecht (2004)

    MATH  Google Scholar 

  11. Jackiewicz, Z.: General Linear Methods for Ordinary Differential Equations. John Wiley & Sons, Hoboken, New Jersey (2009)

    Book  MATH  Google Scholar 

  12. Paternoster, B.: Two step Runge–Kutta–Nystrom methods for y′′ = f(x,y) and P–stability. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J.J., Hoekstra, A.G. (eds.) Computational Science – ICCS 2002. Lecture Notes in Computer Science, vol. 2331, Part III, pp. 459–466. Springer Verlag, Amsterdam (2002)

    Google Scholar 

  13. Wright, W.M.: General linear methods with inherent Runge–Kutta stability. Ph.D. thesis, The University of Auckland, New Zealand (2002)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Paternoster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Ambrosio, R., Esposito, E. & Paternoster, B. General linear methods for y′′ = f (y (t)). Numer Algor 61, 331–349 (2012). https://doi.org/10.1007/s11075-012-9637-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-012-9637-z

Keywords

Mathematics Subject Classification (2010)