Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

On the choice of auxiliary linear operator in the optimal homotopy analysis of the Cahn-Hilliard initial value problem

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Analytical solutions for the Cahn-Hilliard initial value problem are obtained through an application of the homotopy analysis method. While there exist numerical results in the literature for the Cahn-Hilliard equation, a nonlinear partial differential equation, the present results are completely analytical. In order to obtain accurate approximate analytical solutions, we consider multiple auxiliary linear operators, in order to find the best operator which permits accuracy after relatively few terms are calculated. We also select the convergence control parameter optimally, through the construction of an optimal control problem for the minimization of the accumulated L 2-norm of the residual errors. In this way, we obtain optimal homotopy analysis solutions for this complicated nonlinear initial value problem. A variety of initial conditions are selected, in order to fully demonstrate the range of solutions possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cahn, J., Hilliard, J.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258 (1958)

    Article  Google Scholar 

  2. Carr, J., Gurtin, M., Slemrod, M.: Structured phase transitions on a finite interval. Arch. Ration. Mech. Anal. 7, 317 (1984)

    Article  MathSciNet  Google Scholar 

  3. Elliott, C., Songmu, Z.: The Cahn-Hilliard equation. Arch. Ration. Mech. Anal. 28, 339 (1986)

    MathSciNet  Google Scholar 

  4. Elliott, C., French, D.: Numerical studies of the Cahn-Hilliard equation for phase separation. IMA J. Appl. Math. 38, 97 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  5. Toral, R., Chakrabarti, A., Gunton, J.D.: Numerical study of the Cahn-Hilliard equation in three dimensions. Phys. Rev. Lett. 60, 2311 (1988)

    Article  Google Scholar 

  6. Copetti, M.I.M., Elliott, C.M.: Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy. Numer. Math. 63, 39 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. de Melloa, E.V.L., Teixeira da Silveira Filho, O.: Numerical study of the Cahn-Hilliard equation in one, two and three dimensions. Phys. A. 429, 347 (2005)

    Google Scholar 

  8. Liao, S.J.: On the proposed homotopy analysis techniques for nonlinear problems and its application, Ph.D. dissertation, Shanghai Jiao Tong University (1992)

  9. Liao, S.J.: Beyond Perturbation: introduction to the Homotopy Analysis Method. Chapman & Hall/CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  10. Liao, S.J.: An explicit, totally analytic approximation of Blasius’ viscous flow problems. Int. J. Non-Linear Mech. 34, 759–778 (1999)

    Article  MATH  Google Scholar 

  11. Liao, S.J.: On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 147, 499–513 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Liao, S.J., Tan, Y.: A general approach to obtain series solutions of nonlinear differential equations. Stud. Appl. Math. 119, 297–354 (2007)

    Article  MathSciNet  Google Scholar 

  13. Liao, S.J.: Notes on the homotopy analysis method: some definitions and theorems. Commun. Nonlinear Sci. Numer. Simul. 14, 983–997 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Liao, S.J.: Homotopy analysis method in nonlinear differential equations. Springer & Higher Education Press, Heidelberg (2012)

    Book  MATH  Google Scholar 

  15. Van Gorder, R.A., Vajravelu, K.: On the selection of auxiliary functions, operators, and convergence control parameters in the application of the homotopy analysis method to nonlinear differential equations: a general approach. Commun. Nonlinear Sci. Numer. Simul. 14, 4078–4089 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Vajravel, K., Van Gorder, R.A.: Nonlinear flow phenomena and homotopy analysis: fluid flow and heat transfer. Springer & Higher Education Press, Heidelberg (2013)

    Google Scholar 

  17. Liao, S.: An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 15, 2315–2332 (2010)

    Google Scholar 

  18. Abbasbandy, S.: The application of homotopy analysis method to nonlinear equations arising in heat transfer. Phys. Lett. A. 360, 109–113 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Abbasbandy, S.: Homotopy analysis method for heat radiation equations. Int. J. Heat Mass Transf. 34, 380–387 (2007)

    Article  MathSciNet  Google Scholar 

  20. Liao, S.J., Su, J., Chwang, A.T.: Series solutions for a nonlinear model of combined convective and radiative cooling of a spherical body. Int. J. Heat Mass Transf. 49, 2437–2445 (2006)

    Article  MATH  Google Scholar 

  21. Liao, S.J., Campo, A.: Analytic solutions of the temperature distribution in Blasius viscous flow problems. J. Fluid Mech. 453, 411–425 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Liao, S.J.: An explicit, totally analytic approximation of Blasius’ viscous flow problems. Int. J. Non-Linear Mech. 34, 759–778 (1999)

    Article  MATH  Google Scholar 

  23. Liao, S.J.: A uniformly valid analytic solution of 2D viscous flow past a semi-infinite flat plate. J. Fluid Mech. 385, 101–128 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Liao, S.J.: On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluids over a stretching sheet. J. Fluid Mech. 488, 189–212 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  25. Akyildiz, F.T., Vajravelu, K., Mohapatra, R.N., Sweet, E., Van Gorder, R.A.: Implicit differential equation arising in the steady flow of a Sisko fluid. Appl. Math. Comput. 210, 189–196 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hang, X., Lin, Z.L., Liao, S.J., Wu, J.Z., Majdalani, J.: Homotopy based solutions of the Navier-Stokes equations for a porous channel with orthogonally moving walls. Phys. Fluids 22, 053601 (2010)

    Article  Google Scholar 

  27. Sajid, M., Hayat, T., Asghar, S.: Comparison between the HAM and HPM solutions of thin film flows of non-Newtonian fluids on a moving belt. Nonlinear Dyn. 50, 27–35 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hayat, T., Sajid, M.: On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder. Phys. Lett. A. 361, 316–322 (2007)

    Article  MATH  Google Scholar 

  29. Turkyilmazoglu, M.: Purely analytic solutions of the compressible boundary layer flow due to a porous rotating disk with heat transfer. Phys. Fluids 21, 106104 (2009)

    Article  Google Scholar 

  30. Abbasbandy, S., Zakaria, F.S.: Soliton solutions for the fifth-order KdV equation with the homotopy analysis method. Nonlinear Dyn. 51, 83–87 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Wu, W., Liao, S.J.: Solving solitary waves with discontinuity by means of the homotopy analysis method. Chaos, Solitons Fractals 26, 177–185 (2005)

    Article  MATH  Google Scholar 

  32. Sweet, E., Van Gorder, R.A.: Analytical solutions to a generalized Drinfel’d–Sokolov equation related to DSSH and KdV6. Appl. Math. Comput. 216, 2783–2791 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  33. Sweet, E., Van Gorder, R.A.: Exponential type solutions to a generalized Drinfel’d–Sokolov equation. Phys. Script. 82, 035006 (2010)

    Article  Google Scholar 

  34. Wu, Y., Wang, C., Liao, S.J.: Solving the one-loop soliton solution of the Vakhnenko equation by means of the homotopy analysis method. Chaos, Solitons Fractals 23, 1733–1740 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  35. Cheng, J., Liao, S.J., Mohapatra, R.N., Vajravelu, K.: Series solutions of Nano-boundary-layer flows by means of the homotopy analysis method. J. Math. Anal. Appl. 343, 233–245 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Van Gorder, R.A., Sweet, E., Vajravelu, K.: Nano boundary layers over stretching surfaces. Commun. Nonlinear Sci. Numer. Simul. 15, 1494–1500 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. Bataineh, A.S., Noorani, M.S.M., Hashim, I.: Solutions of time-dependent Emden-Fowler type equations by homotopy analysis method. Phys. Lett. A 371, 72–82 (2007)

    Article  MATH  Google Scholar 

  38. Bataineh, A.S., Noorani, M.S.M., Hashim, I.: Homotopy analysis method for singular IVPs of Emden-Fowler type. Commun. Nonlinear Sci. Numer. Simul. 14, 1121–1131 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  39. Van Gorder, R.A., Vajravelu, K.: Analytic and numerical solutions to the Lane-Emden equation. Phys. Lett. A 372, 6060–6065 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  40. Liao, S.: A new analytic algorithm of Lane-Emden type equations. Appl. Math. Comput. 142, 1–16 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  41. Turkyilmazoglu, M.: The Airy equation and its alternative analytic solution. Phys. Scr. 86, 055004 (2012)

    Article  Google Scholar 

  42. Wazwaz, A.M.: Solitary waves solutions for extended forms of quantum Zakharov–Kuznetsov equations. Phys. Scr. 85, 025006 (2012)

    Article  Google Scholar 

  43. Turkyilmazoglu, M.: An effective approach for approximate analytical solutions of the damped Duffing equation. Phys. Scr. 86, 015301 (2012)

    Article  Google Scholar 

  44. Van Gorder, R.A.: Analytical method for the construction of solutions to the Föppl–von Kármán equations governing deflections of a thin flat plate. Int. J. Non-Linear Mech. 47, 1–6 (2012)

    Article  Google Scholar 

  45. Van Gorder, R.A.: Gaussian waves in the Fitzhugh-Nagumo equation demonstrate one role of the auxiliary function H(x) in the homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 17, 1233–1240 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  46. Van Gorder, R.A.: Control of error in the homotopy analysis of semi-linear elliptic boundary value problems. Numer. Algorithms 61, 613–629 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  47. Ghoreishi, M., Ismail, A.I.B., Alomari, A.K., Sami Bataineh, A.: The comparison between homotopy analysis method and optimal homotopy asymptotic method for nonlinear age structured population models. Commun. Nonlinear Sci. Numer. Simul. 17, 1163–1177 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  48. Abbasbandy, S., Shivanian, E., Vajravelu, K.: Mathematical properties of h-curve in the frame work of the homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 16, 4268–4275 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  49. Liao, S.: An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 15, 2315–2332 (2010)

    Google Scholar 

  50. Mallory, K., Van Gorder, R.A.: Control of error in the homotopy analysis of solutions to the Zakharov system with dissipation. Numer. Algorithms (2013, in press). doi:10.1007/s11075-012-9683-6

  51. Baxter, M., Van Gorder, R.A.: Exact and analytic solutions of the Ernst equation governing axially symmetric stationary vacuum gravitational fields. Phys. Scr. 87, 035005 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Van Gorder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baxter, M., Van Gorder, R.A. & Vajravelu, K. On the choice of auxiliary linear operator in the optimal homotopy analysis of the Cahn-Hilliard initial value problem. Numer Algor 66, 269–298 (2014). https://doi.org/10.1007/s11075-013-9733-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-013-9733-8

Keywords