Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An almost second order uniformly convergent scheme for a singularly perturbed initial value problem

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper a nonlinear singularly perturbed initial problem is considered. The behavior of the exact solution and its derivatives is analyzed, and this leads to the construction of a Shishkin-type mesh. On this mesh a hybrid difference scheme is proposed, which is a combination of the second order difference schemes on the fine mesh and the midpoint upwind scheme on the coarse mesh. It is proved that the scheme is almost second-order convergent, in the discrete maximum norm, independently of singular perturbation parameter. Numerical experiment supports these theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amiraliyev, G.M., Duru, H.: A uniformly convergent finite difference method for a singularly perturbed initial value problem. Appl. Math. Mech. 20(4), 379–387 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amiraliyeva, I.G., Erdogan, F., Amiraliyev, G.M.: A uniform numerical method for dealing with a singularly perturbed delay initial value problem. Appl. Math. Lett. 23(10), 1221–1225 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cen, Z.: A second-order difference scheme for a parameterized singular perturbation problem. J. Comput. Appl. Math. 221(1), 174–182 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cen, Z., Xu, A., Le, A.: A second-order hybrid finite difference scheme for a system of singularly perturbed initial value problems. J. Comput. Appl. Math. 234(12), 3445–3457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Erdogan, F., Amiraliyev, G.M.: Fitted finite difference method for singularly perturbed delay differential equations. Numer. Algo. 59(1), 131–145 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Robust computational techniques for boundary layers. Chapman and Hall/CRC Press, New York (2000)

    MATH  Google Scholar 

  7. Gronwall, T.H.: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 20(4), 292–296 (1918)

    Article  MathSciNet  Google Scholar 

  8. Kadalbajoo, M.K., Gupta, V.: A brief survey on numerical methods for solving singularly perturbed problems. Appl. Math. Comput. 217(8), 3641–3716 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Linß, T.: Uniform second-order pointwise convergence of a finite difference discetization for a quasilinear problem. Comput. Math. Math. Phys. 41(6), 898–909 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Linß, T.: Sufficient conditions for uniform convergence on layer-adapted grids. Appl. Numer. Math. 37(1-2), 241–255 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Linß, T.: Layer-adapted meshes for reaction-convection-diffusion problems. Berlin: Springer-Verlag (2010)

    Book  MATH  Google Scholar 

  12. Lorenz, J.: Stability and monotonicity properties of stiff quasilinear boundary problems. Univ. u Novom Sadu Zb. Rad. Prirod. Mat. Fak. Ser. Mat. 12(1982)151–175.

  13. Roos, H.-G., Stynes, M., Tobiska, L.: Numerical methods for singularly perturbed differential equations: convection-diffusion-reaction and flow problems, 2nd edn. Springer-Verlag, Dordrecht (2008)

    Google Scholar 

  14. Stynes, M., Roos, H.-G.: The midpoint upwind scheme. Appl. Numer. Math. 23(3), 361–374 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Stynes, M., Tobiska, L.: A finite difference analysis of a streamline diffusion method on a Shishkin mesh. Numer. Algo. 18(3-4), 337–360 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Willett, D., Wong, J.S.W.: On the discrete analogues of some generalizations of Gronwall’s inequality. Monatshefte fr Mathematik. 69(4)362–367 (1965)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongdi Cen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cen, Z., Erdogan, F. & Xu, A. An almost second order uniformly convergent scheme for a singularly perturbed initial value problem. Numer Algor 67, 457–476 (2014). https://doi.org/10.1007/s11075-013-9801-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-013-9801-0

Keywords

Mathematics Subject Classifications (2010)