Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A parameterized multi-step Newton method for solving systems of nonlinear equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We construct a novel multi-step iterative method for solving systems of nonlinear equations by introducing a parameter θ to generalize the multi-step Newton method while keeping its order of convergence and computational cost. By an appropriate selection of θ, the new method can both have faster convergence and have larger radius of convergence. The new iterative method only requires one Jacobian inversion per iteration, and therefore, can be efficiently implemented using Krylov subspace methods. The new method can be used to solve nonlinear systems of partial differential equations, such as complex generalized Zakharov systems of partial differential equations, by transforming them into systems of nonlinear equations by discretizing approaches in both spatial and temporal independent variables such as, for instance, the Chebyshev pseudo-spectral discretizing method. Quite extensive tests show that the new method can have significantly faster convergence and significantly larger radius of convergence than the multi-step Newton method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  2. Cruz, W.L., Martinez, J.M., Raydan, M.: Spectral residual method without gradient information for solving large-scale nonlinear systems of equations. Math. Comput. 75, 1429–1448 (2006)

    Article  MATH  Google Scholar 

  3. An, H.B., Bai, Z.Z.: A globally convergent Newton-GMRES method for large sparse systems of nonlinear equations. Appl. Numer. Math. 57, 235–252 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zak, M.K., Toutounian, F.: Nested splitting conjugate gradient method for matrix equation A X B = C and preconditioning. Comput. Math. Appl. 66, 269–278 (2013)

    Article  MathSciNet  Google Scholar 

  5. Cordero, A., Hueso, J.L., Martinez, E., Torregrosa, J.R., modified, A: Newton-Jarratts composition. Numer. Algoritm. 55, 87–99 (2010)

    Article  MATH  Google Scholar 

  6. Sharma, J.R., Arora, H.: Efficient Jarratt-like methods for solving systems of nonlinear equations. Calcolo 51, 193–210 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sharma, J.R., Guha, R.K., Sharma, R.: An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numer. Algoritm. 62, 307–323 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Soleymani, F., Lotfi, T., Bakhtiari, P.: A multi-step class of iterative methods for nonlinear systems. Optim. Lett. 8, 1001–1015 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ullah, M.Z., Serra-Capizzano, S., Ahmad, F.: An efficient multi-step iterative method for computing the numerical solution of systems of nonlinear equations associated with ODEs. Appl. Math. Comput. 250, 249–259 (2015)

    Article  MathSciNet  Google Scholar 

  10. Ortega, J.M., Rheinbodt, W.C.: Iterative solution of nonlinear equations in several variables. Academic Press, United Kingdom (1970)

    MATH  Google Scholar 

  11. Budzko, D., Cordero, A., Torregrosa, J.R.: Modifications of Newtons method to extend the convergence domain. Bolet. Sociedad. Espanola. Mat. Aplicada. doi:10.1007/s40324-014-0020-y

  12. Alaidarous, E.S., Zaka Ullah, M., Ahmad, F., Al-Fhaid, A.S.: An efficient higher-order quasilinearization method for solving nonlinear BVPs. J. Appl. Math. 2013, 11 (2013). Article ID 259371

    Article  Google Scholar 

  13. Motsa, S.S., Shateyi, S.: New analytic solution to the lane-emden equation of index 2. Math. Probl. Eng. 2012, 19 (2012). Article ID 614796

    Google Scholar 

  14. Ladeia, C.A., Romeiro, N.M.L.: Numerical Solutions of the 1D Convection-Diffusion-Reaction and the Burgers Equation using Implicit Multi-stage and Finite Element Methods, Integral Methods in Science and Engineering, pp 205–216 (2013)

  15. Jang: An integral equation formalism for solving the nonlinear Klein-Gordon equation. Appl. Math. Comput. 243, 322–338 (2014)

    Article  MathSciNet  Google Scholar 

  16. Gurarie, D., Chow, K.W.: Vortex arrays for sinh-Poisson equation of two-dimensional fluids: Equilibria and stability. Phys. Fluids 16, 9 (2004)

    Article  MathSciNet  Google Scholar 

  17. Averick, B.M., Ortega, J.M.: fast solution of nonlinear Poisson-type equations, Argonne national laboratory, 9700 South Cass Avenue (1991)

  18. Bhrawy, A.H.: An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system. Appl. Math. Comput 247, 30–46 (2014)

    Article  MathSciNet  Google Scholar 

  19. Abbasbandy, S., Babolian, E., Ashtiani, M.: Numerical solution of the generalized Zakharov equation by homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 14, 4114–4121 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chang, Q., Jiang, H.: A conservative difference scheme for the Zakharov equations. J. Comput. Phys. 113, 309 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chang, Q., Guo, B., Jiang, H.: Finite difference method for generalized Zakharov equations. Math. Comput. 64, 537 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Javidi, M., Golbabai, A.: Exact and numerical solitary wave solutions of generalized Zakharov equation by the variational iteration method. Chaos Solitons Fract. 36, 309–313 (2008)

    Article  MATH  Google Scholar 

  23. Bao, W., Sun, F., Wei, G.W.: Numerical methods for the generalized Zakharov system. J. Comput. Phys. 190, 201–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bao, W., Sun, F.: Efficient and stable numerical methods for the generalized and vector Zakharov system, SIAM. J. Sci. Comput. 26, 1057–1088 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Dehghan, M., Izadi, F.F.: The spectral collocation method with three different bases for solving a nonlinear partial differential equation arising in modeling of nonlinear waves. Math. Comput. Model 5, 1865–1877 (2011)

    Article  Google Scholar 

  26. Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations. Appl. Math. Model 35, 5662–5672 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Doha, E.H., Bhrawy, A.H., Hafez, R.M.: On shifted Jacobi spectral method for high-order multi-point boundary value problems. Commun. Nonlinear Sci. Numer. Simul. 17, 3802–3810 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Samadi, O.R.N., Tohidi, E.: The spectral method for solving systems of volterra integral equations. J. Appl. Math. Comput. 40, 477–497 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tohidi, E., Samadi, O.R.N.: Optimal control of nonlinear volterra integral equations via legendre polynomials. IMA J. Math. Control. Inf. 30, 67–83 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tohidi, E., Lotfi Noghabi, S.: An efficient legendre pseudospectral method for solving nonlinear quasi bang-bang optimal control problems. J. Appl. Math. Stat. Inform. 8, 73–85 (2012)

    MATH  Google Scholar 

  31. Wang, Z., Guo, B.-Y.: Jacobi rational approximation spectral method for differential equations of degenerate type. Math. Comput. 77, 883–907 (2008)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emran Tohidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, F., Tohidi, E. & Carrasco, J.A. A parameterized multi-step Newton method for solving systems of nonlinear equations. Numer Algor 71, 631–653 (2016). https://doi.org/10.1007/s11075-015-0013-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-0013-7

Keywords