Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A family of iterative methods that uses divided differences of first and second orders

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The family of fourth-order Steffensen-type methods proposed by Zheng et al. (Appl. Math. Comput. 217, 9592–9597 (2011)) is extended to solve systems of nonlinear equations. This extension uses multidimensional divided differences of first and second orders. For a certain computational efficiency index, two optimal methods are identified in the family. Semilocal convergence is shown for one of these optimal methods under mild conditions. Moreover, a numerical example is given to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amat, S., Busquier, S.: A two-step Steffensen’s method under modified convergence conditions. J. Math. Anal. Appl. 324, 1084–1092 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amat, S., Busquier, S.: On a Steffensen’s type method and its behavior for semismooth equations. Appl. Math. Comput 177, 819–823 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Argyros, I.K.: The secant method and fixed points of nonlinear operators. Monatsh. Math 106, 85–94 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  4. Argyros, I.K.: On the secant method. Publ Math. Debrecen 43, 223–238 (1993)

    MATH  MathSciNet  Google Scholar 

  5. Argyros, I.K.: Computational theory of iterative methods. In: Chui, C. K., Wuytack, L. (eds.) Series: Studies in Computational Mathematics, vol. 15. Elsevier, New York (2007)

    Google Scholar 

  6. Argyros, I.K., Ren, H.: Efficient Steffensen-type algorithms for solving nonlinear equations. Int. J. Comp. Math 90, 691–704 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann P.: MPFR: A multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), Art. 13 (15 pp) (2007)

    Article  Google Scholar 

  8. Grau-Sánchez, M., Noguera, M., Gutiérrez, J.M.: On some computational orders of convergence. Appl. Math. Lett 23, 472–478 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Grau-Sánchez, M., Grau, A., Noguera, M.: Frozen divided difference scheme for solving systems of nonlinear equations. J. Comput. Appl. Math 235, 1739–1743 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Grau-Sánchez, M., Grau, A., Noguera, M., Herrero, J.R.: On new computational local orders of convergence. Appl. Math. Lett 25, 2023–2030 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Mach. 21, 634–651 (1974)

    Article  MathSciNet  Google Scholar 

  12. Liu, Z., Zheng, Q., Zhao, P.: A variant of Steffensen’s method of fourth-order convergence. Appl. Math. Comput 216, 1978–1983 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Polyanin, A.D., Manzhirov, A.V.: Handbook of Integral Equations. CRC Press, Boca Ratón (1998)

    Book  Google Scholar 

  14. Potra, F.A.: A characterisation of the divided differences of an operator which can be represented by Riemann integrals. Revu. Anal. Numer. Theor. Approx. 2, 251–253 (1980)

    Google Scholar 

  15. Potra, F.A., Pták, V.: Nondiscrete Induction and Iterarive Processes. Pitman Publishing, Boston (1984)

    Google Scholar 

  16. Ren, H., Wu, Q., Bi, W.: A class of two-step Steffensen type methods with fourth-order convergence. Appl. Math. Comput 209, 206–210 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Sharma, J.R., Arora, H.: An efficient derivative free iterative method for solving systems of nonlinear equations. Appl. Anal. Discrete Math 7, 390–403 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sharma, J.R., Arora, H., Petkovic, M.S.: An efficient derivative free family of fourth order methods for solving systems of nonlinear equations. Appl. Math. Comput. 235, 383393 (2014)

    Article  MathSciNet  Google Scholar 

  19. Taylor, A.Y., Lay, D., 2nd edn: Introduction to Functional Analysis. Wiley, New York (1980)

    MATH  Google Scholar 

  20. Wang, X., Zhang, T.: A family of Steffensen type methods with seventh-order convergence. Numer. Algor 62, 429–444 (2013)

    Article  MATH  Google Scholar 

  21. Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett 13, 87–93 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zheng, Q., Li, J., Huang, F.: An optimal Steffensen-type family for solving nonlinear equations. Appl. Math. Comput. 217, 9592–9597 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Ezquerro.

Additional information

This work was supported in part by the project MTM2011-28636-C02-01 of the Spanish Ministry of Science and Innovation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezquerro, J.A., Grau-Sánchez, M., Hernández-Verón, M.A. et al. A family of iterative methods that uses divided differences of first and second orders. Numer Algor 70, 571–589 (2015). https://doi.org/10.1007/s11075-015-9962-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-015-9962-0

Keywords

Mathematics Subject Classifications (2010)