Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The FFTRR-based fast direct algorithms for complex inhomogeneous biharmonic problems with applications to incompressible flows

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We develop analysis-based fast and accurate direct algorithms for several biharmonic problems in a unit disk derived directly from the Green’s functions of these problems and compare the numerical results with the “decomposition” algorithms (see Ghosh and Daripa, IMA J. Numer. Anal. 36(2), 824–850 [17]) in which the biharmonic problems are first decomposed into lower order problems, most often either into two Poisson problems or into two Poisson problems and a homogeneous biharmonic problem. One of the steps in the “decomposition algorithm” as discussed in Ghosh and Daripa (IMA J. Numer. Anal. 36(2), 824–850 [17]) for solving certain biharmonic problems uses the “direct algorithm” without which the problem can not be solved. Using classical Green’s function approach for these biharmonic problems, solutions of these problems are represented in terms of singular integrals in the complex z−plane (the physical plane) involving explicitly the boundary conditions. Analysis of these singular integrals using FFT and recursive relations (RR) in Fourier space leads to the development of these fast algorithms which are called FFTRR based algorithms. These algorithms do not need to do anything special to overcome coordinate singularity at the origin as often the case when solving these problems using finite difference methods in polar coordinates. These algorithms have some other desirable properties such as the ease of implementation and parallel in nature by construction. Moreover, these algorithms have O(logN) complexity per grid point where N 2 is the total number of grid points and have very low constant behind this order estimate of the complexity. Performance of these algorithms is shown on several test problems. These algorithms are applied to solving viscous flow problems at low and moderate Reynolds numbers and numerical results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson, L-E., Elfving, T., Golub, G.: Solution of biharmonic equations with application to radar imaging. J. Comput. Appl. Math. 94(2), 153–180 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Badea, L., Daripa, P.: A fast algorithm for two-dimensional elliptic problems. Numer. Algorithms. 30(3-4), 199–239 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Begehr, H.: Boundary value problems in complex analysis. II. Bol. Asoc. Mat. Venez. 12(2), 217–250 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Begehr, H.: Dirichlet problems for the biharmonic equation. Gen. Math. 13 (2), 65–72 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Begehr, H.: Biharmonic Green functions. Matematiche (Catania) 61(2), 395–405 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Begehr, H., Tutschke, W.: Six biharmonic Dirichlet problems in complex analysis. In: Son, L.H. (ed.) Function Spaces in Complex and Clifford Analysis, pp 243–252. Natl. Univ. Publ., Hanoi (2008)

  7. Ben-Artzi, M., Chorev, I., Croisille, J.P., Fishelov, D.: A compact difference scheme for the biharmonic equation in planar irregular domains. SIAM J. Numer. Anal. 47(4), 3087–3108 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bjorstad, P.: Fast numerical solution of the biharmonic Dirichlet problem on rectangles. SIAM. J. Numer. Anal. 20, 626–668 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  9. Borges, L., Daripa, P.: A parallel version of a fast algorithm for singular integral transforms. Numer. Algorithms. 23(1), 71–96 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Borges, L., Daripa, P.: A fast parallel algorithm for the Poisson equation on a disk. J. Comput. Phys. 169(1), 151–192 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Braess, D., Peisker, P.: On the numerical solution of the biharmonic equation and the role of squaring matrices for preconditioning. IMA J. Numer. Anal. 6(4), 393–404 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheng, X., Han, W., Huang, H.: Some mixed finite element methods for biharmonic equation. J. Comput. Appl. Math. 126(1–2), 91–109 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Daripa, P.: A fast algorithm to solve nonhomogeneous Cauchy-Riemann equations in the complex plane. SIAM J. Sci. Statist. Comput. 13(6), 1418–1432 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Daripa, P.: A fast algorithm to solve the Beltrami equation with applications to quasiconformal mappings. J. Comput. Phys. 106(2), 355–365 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Daripa, P., Mashat, D.: Singular integral transforms and fast numerical algorithms. Numer. Algorithms. 18(2), 133–157 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dennis, S.C.R.: Numerical methods in fluid dynamics. Proc. 4th Int. Conf. Numer. Methods Fluid Dyn. 4(0), 138–143 (1974)

    Google Scholar 

  17. Ghosh, A., Daripa, P.: The FFTRR-based fast decomposition methods for solving complex biharmonic problems and incompressible flows. IMA J. Numer. Anal. 36(2), 824–850 (2015)

    Article  MathSciNet  Google Scholar 

  18. Greenbaum, A., Greengard, L., Mayo, A.: On the numerical solution of the biharmonic equation in the plane. Phys. D. 60(1–4), 216–225 (1992). Experimental mathematics: computational issues in nonlinear science (Los Alamos, NM, 1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Greengard, L., Kropinski, M.: An integral equation approach to the incompressible Navier-Stokes equations in two dimensions. SIAM J. Sci. Comput. 20 (1), 318–336 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Greengard, L., Kropinski, M., Mayo, A.: Integral equation methods for Stokes flow and isotropic elasticity in the plane. J. Comput. Phys. 125(2), 403–414 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guazzelli, E., Morris, J.F.: A Physical Introduction to Suspension Dynamics. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  22. Kapur, S., Rokhlin, V.: High-order corrected trapezoidal quadrature rules for singular functions. SIAM J. Numer. Anal. 34(4), 1331–1356 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kuwahara, K., Imai, I.: Steady viscous flow within a circular boundary. Phys. Fluids. 12(2), 94–101 (1969)

    MATH  Google Scholar 

  24. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover Press. reprinted (1994) (1927)

  25. Lurie, S.A., Vasiliev, V.V.: The Biharmonic Problem in the Theory of Elasticity. Gordon and Breach Publishers, Luxembourg (1995)

    MATH  Google Scholar 

  26. Mabey, D.G.: Fluid dynamics. J.Roy. Aero.Soc. 61(2), 181–198 (1957)

    Google Scholar 

  27. Mayo, A.: The rapid evaluation of volume integrals of potential theory on general regions. J. Comput. Phys. 100(2), 236–245 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mills, R.D.: Computing internal viscous flow problems for the circle by integral methods. J. Fluid Mech. 79(3), 609–624 (1977)

    Article  MATH  Google Scholar 

  29. Monk, P.: A mixed finite element method for the biharmonic equation. SIAM J. Numer. Anal. 24(4), 737–749 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity, 3rd (and revised) ed., English translation. Springer (1977)

  31. Pandit, S.K.: On the use of compact streamfunction-velocity formulation of steady Navier-Stokes equations on geometries beyond rectangular. J. Sci. Comput. 36(2), 219–242 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Peisker, P.: On the numerical solution of the first biharmonic equation. RAIRO Modél Math. Anal. Numér. 22(4), 655–676 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rayleigh, L.: Fluid dynamics. Phil. Mag. 5(5), 354–363 (1893)

    Article  Google Scholar 

  34. Sidi, A., Israeli, M.: Quadrature methods for periodic singular and weakly singular Fredholm integral equations. J. Sci. Comput. 3(2), 201–231 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, Z., Wei, X., Gao, X.: Solution of the plane stress problems of strain-hardening materials described by power-law using the complex pseudo-stress function. Appl. Math. Mech. 12(5), 481–492 (1991)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabir Daripa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daripa, P., Ghosh, A. The FFTRR-based fast direct algorithms for complex inhomogeneous biharmonic problems with applications to incompressible flows. Numer Algor 75, 937–971 (2017). https://doi.org/10.1007/s11075-016-0226-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0226-4

Keywords