Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A new chaos optimization algorithm based on symmetrization and levelling approaches for global optimization

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Chaos optimization algorithm is a recently developed method for global optimization based on chaos theory. It has many good features such as easy implementation, short execution time and robust mechanisms for escaping from local minima compared with existing stochastic searching algorithms. In the present paper, we propose a new chaos optimization algorithm (COA) approach called SLC (symmetric levelled chaos) based on new strategies including symmetrization and levelling: the proposed SLC method is, to our knowledge, the first chaos approach that can efficiently and successfully operates in higher-dimensional spaces. The proposed method is tested on a number of benchmark functions, and its performance comparisons are provided against previous COAs. The experiment results show that the proposed method has a marked improvement in performance over the classical COA approaches. Moreover, among all COA approaches, SLC is the only one to work efficiently in higher-dimensional spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, X.X., Chen, Z.: Introduction of Chaos Theory. Shanghai Science and Technology Bibliographic Publishing House, Shanghai (1996)

    Google Scholar 

  2. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  Google Scholar 

  3. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196–1199 (1990)

    Article  MathSciNet  Google Scholar 

  4. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic system. Phys. Rev. Lett. 64(8), 821–824 (1990)

    Article  MathSciNet  Google Scholar 

  5. Li, B., Jiang, W.: Chaos optimization method and its application. J. Control Theory Appl. 14(4), 613–615 (1997)

    Google Scholar 

  6. Shengsong, L., Min, W., Zhijian, H.: Hybrid algorithm of chaos optimization and SLP for optimal power flow problems with multimodal characteristic. In: Proceedings of IEEE Generation. Transm. Distrib., pp. 543–547 (2003)

    Article  Google Scholar 

  7. Wang, J., Wang, X.: A global control of polynomial chaotic systems. Int. J. Control. 72(10), 911–918 (1999)

    Article  MathSciNet  Google Scholar 

  8. Ishii, S., Sato, M.: Constrained neural approaches to quadratic assignment problems. Neural Netw. J. 11(6), 1073–1082 (1998)

    Article  Google Scholar 

  9. Wong, K.W., Man, K.P., Li, S., Liao, X.: More secure chaotic cryptographic scheme based on dynamic look-up table circuits. Syst. Signal Process J 24(5), 571–84 (2005)

    Article  Google Scholar 

  10. Gao, H., Zhang, Y., Liang, S., Li, A.: New chaotic algorithm for image encryption. Commerce and Security, pp. 74–78. Guangzhou (2010)

  11. Coelho, L.D S.: Tuning of PID controller for an automatic regulator voltage system using chaotic optimization approach. Chaos, Solitons and Fractals 39, 1504–1514 (2009)

    Article  Google Scholar 

  12. Hamaizia, T., Lozi, R.: Improving chaotic optimization algorithm using a new global locally averaged strategy. In: Aziz-Alaoui, M., Banos, A, Bertelle, C, Duchamp, G.H.E. (eds.) Emergent Properties in Natural and Artificial Complex Systems. <hal-00607824>, pp. 17–20, Vienne (2011)

  13. Hamaizia, T., Lozi, R., Hamri, N.: Fast chaotic optimization algorithm based on locally averaged strategy and multifold chaotic attractor. J. Appl. Math. Comput. 219, 188–196 (2012)

    Article  MathSciNet  Google Scholar 

  14. Yang, D., Li, G., Cheng, G.: On the efficiency of chaos optimization algorithms for global optimization. Chaos, Solitons and Fractals 34(4), 1366–1375 (2007)

    Article  MathSciNet  Google Scholar 

  15. Li, B., Jiang, W.: Optimizing complex function by chaos search. J. Cybern. Syst. 29(4), 409–419 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Aslimani.

Appendix: Data for the test functions

Appendix: Data for the test functions

  • Penalized 1,2: \( u(x_{i},a,k,m) = \left \{\begin {array}{llllllllllllll} k(x_{i}-a)^{m} & ,\: x_{i}>a \\ \qquad 0 & , \:-a< x(k)< a \\ k(-x_{i}-a)^{m} & , \:-x_{i}<-a \end {array}\right .\)

  • Shekel 5: \( a=\left (\begin {array}{cccc} 4 & 4 & 4 & 4\\ 1 & 1 & 1 & 1\\ 8 & 8 & 8 & 8\\ 6 & 6 & 6 & 6\\ 3 & 7 & 3 & 7 \end {array} \right ),\: c=\left (\begin {array}{c} 0.1 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.4 \end {array} \right )\)

  • Shekel 7: \( a=\left (\begin {array}{cccc} 4 & 4 & 4 & 4\\ 1 & 1 & 1 & 1\\ 8 & 8 & 8 & 8\\ 6 & 6 & 6 & 6\\ 3 & 7 & 3 & 7\\ 2 & 9 & 2 & 9\\ 5 & 5 & 3 & 3 \end {array} \right ),\; c=\left (\begin {array}{c} 0.1 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.4 \\ 0.6 \\ 0.3 \end {array} \right )\)

  • Shekel 10: \( a=\!\left (\begin {array}{cccc} 4 & 4 & 4 & 4\\ 1 & 1 & 1 & 1\\ 8 & 8 & 8 & 8\\ 6 & 6 & 6 & 6\\ 3 & 7 & 3 & 7\\ 2 & 9 & 2 & 9\\ 5 & 5 & 3 & 3\\ 8 & 1 & 8 & 1\\ 6 & 2 & 6 & 2\\ 7 & 3.6 & 7 & 3.6 \end {array} \right ),\: c=\left (\begin {array}{c} 0.1 \\ 0.2 \\ 0.2 \\ 0.4 \\ 0.4 \\ 0.6 \\ 0.3 \\ 0.7 \\ 0.5 \\ 0.5 \end {array} \right )\)

  • Hartman 3: \( a=\left (\begin {array}{ccc} 3 & 10 & 30 \\ 0.1 & 10 & 35 \\ 3 & 10 & 30 \\ 0.1 & 10 & 35 \end {array} \right ),\:\)\( p=\left (\begin {array}{ccc} 0.3689 & 0.117 & 0.26736 \\ 0.4699 & 0.4387 & 0.747 \\ 0.1091 & 0.8732 & 0.5547 \\ 0.03815 & 0.5743 & 0.8828 \end {array} \right ), \: c=\left (\begin {array}{c} 1 \\ 1.2 \\ 3 \\ 3.2 \end {array} \right ) \)

  • Hartman 6: \(a=\left (\begin {array}{cccccc} 10 & 3 & 17 & 3.5 & 1.7 & 8\\ 0.05 & 10 & 17 & 0.1 & 8 & 14\\ 3 & 3.5 & 1.7 & 10 & 17 & 8\\ 17 & 8 & 0.05 & 10 & 0.1 & 14 \end {array} \right ),\, p=\!\left (\begin {array}{cccccc} 0.1312 & 0.1696 & 0.5569 & 0.0124 & 0.8283 & 0.5886\\ 0.2329 & 0.4135 & 0.8307 & 0.3736 & 0.1004 & 0.9991 \\ 0.2348 & 0.1451 & 0.3522 & 0.2883 & 0.3047 & 0.6650 \\ 0.4047 & 0.8828 & 0.8732 & 0.5743 & 0.1091 & 0.0381 \end {array} \right ),\, c=\left (\begin {array}{c} 1 \\ 1.2 \\ 3 \\ 3.2 \end {array} \right )\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslimani, N., Ellaia, R. A new chaos optimization algorithm based on symmetrization and levelling approaches for global optimization. Numer Algor 79, 1021–1047 (2018). https://doi.org/10.1007/s11075-018-0471-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0471-9

Keywords