Abstract
The electrical activity in excitable cardiac tissue can be simulated using the so-called monodomain model. The monodomain model is a continuum-based multi-scale model that consists of non-linear ordinary differential equations describing the electrical activity at the cellular scale along with a semi-linear parabolic partial differential equation describing electrical propagation at the tissue scale. The standard “scale-based” splitting method for simulating the monodomain model is to split the tissue and cell models, applying different integrators to each. Typically, the tissue model is simulated with an implicit time-integration method, and the cell model is simulated with an explicit or explicit-exponential one. We demonstrate that the application of implicit-explicit (IMEX) linear multistep or Runge–Kutta methods to this splitting can have poor stability properties when the cell model is stiff. We propose a novel “gating-enhanced” IMEX splitting that treats the tissue variable and the (typically stiff) cell model gating variables together implicitly. The performance of 14 different IMEX methods using both splittings is measured in a variety of one- and two-dimensional experiments. The low incremental overhead combined with the substantially improved stability of the gating-enhanced splitting is shown to result in a performance increase of approximately a factor of four for simulations of the monodomain model with the stiff ten Tusscher–Panfilov model of human endocardial cells.
Similar content being viewed by others
References
Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations. App. Num. Math 25(2-3), 151–167 (1997)
Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Num. Analy 32(3), 797–823 (1995)
Auckland Bioengineering Institute: The CellML project., http://www.cellml.org/ (2011)
Burrage, K., Butcher, J.: Non-linear stability of a general class of differential equation methods. BIT 20, 185–203 (1980)
Cervi, J., Spiteri, R.J.: High-order operator splitting for the bidomain and monodomain models. SIAM J. Sci. Comput. 40(2), A769–A786 (2018). https://doi.org/10.1137/17M1137061
Cooper, J., Spiteri, R.J., Mirams, G.R.: Cellular cardiac electrophysiology modeling with chaste and cellml. Front. Physiol. 5, 511 (2015). https://doi.org/10.3389/fphys.2014.00511. https://www.frontiersin.org/article/10.3389/fphys.2014.00511
Ethier, M., Bourgault, Y.: Semi-implicit time-discretization schemes for the bidomain model. SIAM J. Numer. Anal. 46(5), 2443–2468 (2008). https://doi.org/10.1137/070680503
FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J 1(6), 445–466 (1961)
Hooke, N., Henriquez, C., Lanzkron, P., Rose, D.: Linear algebraic transformations of the bidomain equations: Implications for numerical methods. Math. Biosci. 120(2), 127–145 (1994). https://doi.org/10.1016/0025-5564(94)90049-3. http://www.sciencedirect.com/science/article/pii/0025556494900493
Karniadakis, G., Sherwin, S.: Spectral/hp element methods for computational fluid dynamics, 2nd edn. Oxford University Press, Oxford (2005)
Keener, J.P., Bogar, K.: A numerical method for the solution of the bidomain equations in cardiac tissue. Chaos: An Interdisciplinary Journal of Nonlinear Science 8(1), 234–241 (1998). https://doi.org/10.1063/1.166300
Marsh, M.E., Torabi Ziaratgahi, S., Spiteri, R.J.: The secrets to the success of the rush-larsen method and its generalizations. IEEE Trans. Biomed. Eng. 59(9), 2506–2515 (2012). https://doi.org/10.1109/TBME.2012.2205575
Mirin, A.A., Richards, D.F., Glosli, J.N., Draeger, E.W., Chan, B., Fattebert, J.L., Krauss, W.D., Oppelstrup, T., Rice, J.J., Gunnels, J.A., Gurev, V., Kim, C., Magerlein, J., Reumann, M., Wen, H.F.: Toward real-time modeling of human heart ventricles at cellular resolution: Simulation of drug-induced arrhythmias, pp 2:1–2:11. IEEE Computer Society Press, Los Alamitos (2012). http://dl.acm.org/citation.cfm?id=2388996.2388999
Nektar++: Spetral/hp Element Framework. Users Guide - Version 4.4.1: http://doc.nektar.info/userguide/4.4.1 (2017). [Online; accessed 24-Jan-2019]
Niederer, S.A., Kerfoot, E., Benson, A.P., Bernabeu, M.O., Bernus, O., Bradley, C., Cherry, E.M., Clayton, R., Fenton, F.H., Garny, A., Heidenreich, E., Land, S., Maleckar, M., Pathmanathan, P., Plank, G., Rodriguez, J.F., Roy, I., Sachse, F.B., Seemann, G., Skavhaug, O., Smith, N.P.: Verification of cardiac tissue electrophysiology simulators using an N-version benchmark. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369(1954), 4331–4351 (2011). https://doi.org/10.1098/rsta.2011.0139
Pandit, S.V., Clark, R.B., Giles, W.R., Demir, S.S.: A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. Biophys. J. 81(6), 3029–3051 (2001). https://doi.org/10.1016/S0006-3495(01)75943-7. http://www.sciencedirect.com/science/article/pii/S0006349501759437
Richardson, L.F.: On the approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Proc R Soc London A: Math Phys Eng Sci 83(563), 335–336 (1910). https://doi.org/10.1098/rspa.1910.0020. http://rspa.royalsocietypublishing.org/content/83/563/335
Spiteri, R.J., Dean, R.C.: Stiffness analysis of cardiac electrophysiological models. Ann. Biomed. Eng. 38(12), 3592–3604 (2010). https://doi.org/10.1007/s10439-010-0100-9
Spiteri, R.J., Torabi Ziaratgahi, S.: Operator splitting for the bidomain model revisited. J. Comput. Appl. Math. 296, 550–563 (2016). https://doi.org/10.1016/j.cam.2015.09.015. http://linkinghub.elsevier.com/retrieve/pii/S0377042715004677
Sundnes*, J., Artebrant, R., Skavhaug, O., Tveito, A.: A second-order algorithm for solving dynamic cell membrane equations. IEEE Trans. Biomed. Eng. 56(10), 2546–2548 (2009). https://doi.org/10.1109/TBME.2009.2014739
Sundnes, J., Lines, G.T., Cai, X., Nielsen, B.F., Mardal, K.A., Tveito, A.: Computing the electrical activity in the heart. Springer-Verlag, Berlin (2006)
Tung, L.: A bi-domain model for describing ischemic myocardial D-C potentials. Ph.D. thesis, MIT (978). Department of Electrical Engineering and Computer Science
ten Tusscher, K., Noble, D., Noble, P.J., Panfilov, A.V.: A model for human ventricular tissue. AJP - Heart and Circulatory Physiology 286(4), 1573–1589 (2004). http://ajpheart.physiology.org/cgi/content/abstract/286/4/H1573
ten Tusscher, K.H.W.J., Panfilov, A.V.: Alternans and spiral breakup in a human ventricular tissue model. Am. J. Physiol. Heart Circ. Physiol. 291(3), 1088–1100 (2006). https://doi.org/10.1152/ajpheart.00109.2006
Vos, P.E.J., Eskilsson, C., Bolis, A., Chun, S., Kirby, R.M., Sherwin, S.J.: A generic framework for time-stepping partial differential equations (pdes): general linear methods, object-oriented implementation and application to fluid problems. Int. J. Compt. Fluid. Dyn. 25(3), 107–125 (2011). https://doi.org/10.1080/10618562.2011.575368
Vos, P.E.J., Sherwin, S.J., Kirby, M.R.: From h to p efficiently: Implementing finite and spectral/hp element discretisations to achieve optimal performance at low and high order approximations. J. Compt. Phys. 229(13), 5161–5181 (2010). https://doi.org/10.1016/j.jcp.2010.03.031
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Green, K.R., Spiteri, R.J. Gating-enhanced IMEX splitting methods for cardiac monodomain simulation. Numer Algor 81, 1443–1457 (2019). https://doi.org/10.1007/s11075-019-00669-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-019-00669-y