Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Gating-enhanced IMEX splitting methods for cardiac monodomain simulation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The electrical activity in excitable cardiac tissue can be simulated using the so-called monodomain model. The monodomain model is a continuum-based multi-scale model that consists of non-linear ordinary differential equations describing the electrical activity at the cellular scale along with a semi-linear parabolic partial differential equation describing electrical propagation at the tissue scale. The standard “scale-based” splitting method for simulating the monodomain model is to split the tissue and cell models, applying different integrators to each. Typically, the tissue model is simulated with an implicit time-integration method, and the cell model is simulated with an explicit or explicit-exponential one. We demonstrate that the application of implicit-explicit (IMEX) linear multistep or Runge–Kutta methods to this splitting can have poor stability properties when the cell model is stiff. We propose a novel “gating-enhanced” IMEX splitting that treats the tissue variable and the (typically stiff) cell model gating variables together implicitly. The performance of 14 different IMEX methods using both splittings is measured in a variety of one- and two-dimensional experiments. The low incremental overhead combined with the substantially improved stability of the gating-enhanced splitting is shown to result in a performance increase of approximately a factor of four for simulations of the monodomain model with the stiff ten Tusscher–Panfilov model of human endocardial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations. App. Num. Math 25(2-3), 151–167 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ascher, U.M., Ruuth, S.J., Wetton, B.T.R.: Implicit-explicit methods for time-dependent partial differential equations. SIAM J. Num. Analy 32(3), 797–823 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Auckland Bioengineering Institute: The CellML project., http://www.cellml.org/ (2011)

  4. Burrage, K., Butcher, J.: Non-linear stability of a general class of differential equation methods. BIT 20, 185–203 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cervi, J., Spiteri, R.J.: High-order operator splitting for the bidomain and monodomain models. SIAM J. Sci. Comput. 40(2), A769–A786 (2018). https://doi.org/10.1137/17M1137061

    Article  MathSciNet  MATH  Google Scholar 

  6. Cooper, J., Spiteri, R.J., Mirams, G.R.: Cellular cardiac electrophysiology modeling with chaste and cellml. Front. Physiol. 5, 511 (2015). https://doi.org/10.3389/fphys.2014.00511. https://www.frontiersin.org/article/10.3389/fphys.2014.00511

    Article  Google Scholar 

  7. Ethier, M., Bourgault, Y.: Semi-implicit time-discretization schemes for the bidomain model. SIAM J. Numer. Anal. 46(5), 2443–2468 (2008). https://doi.org/10.1137/070680503

    Article  MathSciNet  MATH  Google Scholar 

  8. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J 1(6), 445–466 (1961)

    Article  Google Scholar 

  9. Hooke, N., Henriquez, C., Lanzkron, P., Rose, D.: Linear algebraic transformations of the bidomain equations: Implications for numerical methods. Math. Biosci. 120(2), 127–145 (1994). https://doi.org/10.1016/0025-5564(94)90049-3. http://www.sciencedirect.com/science/article/pii/0025556494900493

    Article  MathSciNet  MATH  Google Scholar 

  10. Karniadakis, G., Sherwin, S.: Spectral/hp element methods for computational fluid dynamics, 2nd edn. Oxford University Press, Oxford (2005)

    Book  MATH  Google Scholar 

  11. Keener, J.P., Bogar, K.: A numerical method for the solution of the bidomain equations in cardiac tissue. Chaos: An Interdisciplinary Journal of Nonlinear Science 8(1), 234–241 (1998). https://doi.org/10.1063/1.166300

    Article  MATH  Google Scholar 

  12. Marsh, M.E., Torabi Ziaratgahi, S., Spiteri, R.J.: The secrets to the success of the rush-larsen method and its generalizations. IEEE Trans. Biomed. Eng. 59(9), 2506–2515 (2012). https://doi.org/10.1109/TBME.2012.2205575

    Article  Google Scholar 

  13. Mirin, A.A., Richards, D.F., Glosli, J.N., Draeger, E.W., Chan, B., Fattebert, J.L., Krauss, W.D., Oppelstrup, T., Rice, J.J., Gunnels, J.A., Gurev, V., Kim, C., Magerlein, J., Reumann, M., Wen, H.F.: Toward real-time modeling of human heart ventricles at cellular resolution: Simulation of drug-induced arrhythmias, pp 2:1–2:11. IEEE Computer Society Press, Los Alamitos (2012). http://dl.acm.org/citation.cfm?id=2388996.2388999

    Google Scholar 

  14. Nektar++: Spetral/hp Element Framework. Users Guide - Version 4.4.1: http://doc.nektar.info/userguide/4.4.1 (2017). [Online; accessed 24-Jan-2019]

  15. Niederer, S.A., Kerfoot, E., Benson, A.P., Bernabeu, M.O., Bernus, O., Bradley, C., Cherry, E.M., Clayton, R., Fenton, F.H., Garny, A., Heidenreich, E., Land, S., Maleckar, M., Pathmanathan, P., Plank, G., Rodriguez, J.F., Roy, I., Sachse, F.B., Seemann, G., Skavhaug, O., Smith, N.P.: Verification of cardiac tissue electrophysiology simulators using an N-version benchmark. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369(1954), 4331–4351 (2011). https://doi.org/10.1098/rsta.2011.0139

    Article  MathSciNet  Google Scholar 

  16. Pandit, S.V., Clark, R.B., Giles, W.R., Demir, S.S.: A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. Biophys. J. 81(6), 3029–3051 (2001). https://doi.org/10.1016/S0006-3495(01)75943-7. http://www.sciencedirect.com/science/article/pii/S0006349501759437

    Article  Google Scholar 

  17. Richardson, L.F.: On the approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Proc R Soc London A: Math Phys Eng Sci 83(563), 335–336 (1910). https://doi.org/10.1098/rspa.1910.0020. http://rspa.royalsocietypublishing.org/content/83/563/335

    Article  MATH  Google Scholar 

  18. Spiteri, R.J., Dean, R.C.: Stiffness analysis of cardiac electrophysiological models. Ann. Biomed. Eng. 38(12), 3592–3604 (2010). https://doi.org/10.1007/s10439-010-0100-9

    Article  Google Scholar 

  19. Spiteri, R.J., Torabi Ziaratgahi, S.: Operator splitting for the bidomain model revisited. J. Comput. Appl. Math. 296, 550–563 (2016). https://doi.org/10.1016/j.cam.2015.09.015. http://linkinghub.elsevier.com/retrieve/pii/S0377042715004677

    Article  MathSciNet  MATH  Google Scholar 

  20. Sundnes*, J., Artebrant, R., Skavhaug, O., Tveito, A.: A second-order algorithm for solving dynamic cell membrane equations. IEEE Trans. Biomed. Eng. 56(10), 2546–2548 (2009). https://doi.org/10.1109/TBME.2009.2014739

    Article  Google Scholar 

  21. Sundnes, J., Lines, G.T., Cai, X., Nielsen, B.F., Mardal, K.A., Tveito, A.: Computing the electrical activity in the heart. Springer-Verlag, Berlin (2006)

    MATH  Google Scholar 

  22. Tung, L.: A bi-domain model for describing ischemic myocardial D-C potentials. Ph.D. thesis, MIT (978). Department of Electrical Engineering and Computer Science

  23. ten Tusscher, K., Noble, D., Noble, P.J., Panfilov, A.V.: A model for human ventricular tissue. AJP - Heart and Circulatory Physiology 286(4), 1573–1589 (2004). http://ajpheart.physiology.org/cgi/content/abstract/286/4/H1573

    Article  Google Scholar 

  24. ten Tusscher, K.H.W.J., Panfilov, A.V.: Alternans and spiral breakup in a human ventricular tissue model. Am. J. Physiol. Heart Circ. Physiol. 291(3), 1088–1100 (2006). https://doi.org/10.1152/ajpheart.00109.2006

    Article  Google Scholar 

  25. Vos, P.E.J., Eskilsson, C., Bolis, A., Chun, S., Kirby, R.M., Sherwin, S.J.: A generic framework for time-stepping partial differential equations (pdes): general linear methods, object-oriented implementation and application to fluid problems. Int. J. Compt. Fluid. Dyn. 25(3), 107–125 (2011). https://doi.org/10.1080/10618562.2011.575368

    Article  MathSciNet  MATH  Google Scholar 

  26. Vos, P.E.J., Sherwin, S.J., Kirby, M.R.: From h to p efficiently: Implementing finite and spectral/hp element discretisations to achieve optimal performance at low and high order approximations. J. Compt. Phys. 229(13), 5161–5181 (2010). https://doi.org/10.1016/j.jcp.2010.03.031

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin R. Green.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Green, K.R., Spiteri, R.J. Gating-enhanced IMEX splitting methods for cardiac monodomain simulation. Numer Algor 81, 1443–1457 (2019). https://doi.org/10.1007/s11075-019-00669-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00669-y

Keywords