Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Efficient, non-iterative, and decoupled numerical scheme for a new modified binary phase-field surfactant system

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We consider in this paper numerical approximations of a Cahn-Hilliard binary phase-field fluid-surfactant model. By adding a quartic form of the gradient potential, we first modify the commonly used total free energy into a form which is bounded from below and establish the energy law for the new system. Then we develop a stabilized-SAV scheme that combines the SAV approach with the stabilization technique, where a crucial linear stabilization term is added to enhance the stability thus allowing large time steps. With many desired properties such as a second-order in time, totally decoupled, linear, and non-iterative, this scheme is unconditionally energy stable and requires solving only four decoupled and linear biharmonic equations with constant coefficients at each time step. We further prove the energy stability and present numerous 2D and 3D numerical simulations to demonstrate the accuracy and stability of the developed scheme

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chen, C., Yang, X.: Efficient numerical scheme for a dendritic solidification phase field model with melt convection. J Comput. Phys. 388, 41–62 (2019)

    Article  MathSciNet  Google Scholar 

  2. Chen, C., Yang, X.: Fast, provably unconditionally energy stable, and second-order accurate algorithms for the anisotropic Cahn-Hilliard Model. Comput. Meth. Appl. Mech. Engrg. 351, 35–59 (2019)

    Article  MathSciNet  Google Scholar 

  3. Elder, KR., Martin Grant: Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Phys. Rev E. 70, 051605 (2004)

    Article  Google Scholar 

  4. Engblom, S., Do-Quang, M., Amberg, G., Tornberg, A.-K.: On diffuse interface modeling and simulation of surfactants in two-phase fluid flow. Phys. Comm. Comput. 14, 879–915 (2013)

    Article  MathSciNet  Google Scholar 

  5. Fonseca, I., Morini, M., Slastikov, V.: Surfactants in foam stability a phase-field approach. Arch. Rational Mech. Anal. 183, 411–456 (2007)

    Article  MathSciNet  Google Scholar 

  6. Golovin, AA., Nepomnyashchy, AA.: Disclinations in square and hexagonal patterns. Phys. Rev. E. 70, 056202 (2003)

    Article  MathSciNet  Google Scholar 

  7. Gompper, G., Schick, M. In: Domb, C., Lebowitz, J. (eds.) : Self-assembling amphiphilic systems, in phase trasitions and critical phenomena, p 16. Academic Press, London (1994)

  8. Kim, J.: Numerical simulations of phase separation dynamics in a water-oil-surfactant system. J. Colloid Interf. Sci. 303, 272–279 (2006)

    Article  Google Scholar 

  9. Kim, J., Lowengrub, J.: Phase field modeling and simulation of three-phase flows. Interface and Free Boundaries 7, 435–466 (2005)

    Article  MathSciNet  Google Scholar 

  10. Komura, S., H. Kodama.: Two-order-parameter model for an oil-water-surfactant system. Phys. Rev E. 55, 1722–1727 (1997)

    Article  Google Scholar 

  11. Krug, J.: Origins of scale invariance in growth processes. Advan. Phys. 46(2), 139–282 (1997)

    Article  Google Scholar 

  12. Laradji, M., Guo, H., Grant, M., Zuckermann, MJ.: The effect of surfactants on the dynamics of phase separation. J. Phys. Condens. Matter 4(32), 6715 (1992)

    Article  Google Scholar 

  13. Laradji, M., Mouristen, OG., Toxvaerd, S., Zuckermann, MJ.: Molecular dynamics simulatiens af phase separation in the presence ef surfactants. Phys. Rev E. 50, 1722–1727 (1994)

    Article  Google Scholar 

  14. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a fourier-spectral method. Physica D. 179(3-4), 211–228 (2003)

    Article  MathSciNet  Google Scholar 

  15. Liu, H., Zhang, Y.: Phase-field modeling droplet dynamics with soluble surfactants. J. Comput. Phys. 229, 9166–9187 (2010)

    Article  Google Scholar 

  16. Lloyd, D.J., Sandstede, B., Avitabile, D., Champneys, A.R.: Localized hexagon patterns of the planar swift-hohenberg equation. SIAM J. Appl. Dyn. Syst. 7, 1049–1100 (2008)

    Article  MathSciNet  Google Scholar 

  17. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible cahn-Hilliard fluids and topological transitions. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454(1978), 2617–2654 (1998)

    Article  MathSciNet  Google Scholar 

  18. Minjeaud, S.: An unconditionally stable uncoupled scheme for a triphasic Cahn–Hilliard/Navier–Stokes model. Numerical Methods for Partial Differential Equations 29, 584–618 (2013)

    Article  MathSciNet  Google Scholar 

  19. Moldovan, D., Golubovic, L.: Interfacial coarsening dynamics in epitaxial growth with slope selection. Phys. Rev. E 61, 6190–6214 (2000)

    Article  Google Scholar 

  20. Patzold, G., Dawson, K.: Numerical simulation of phase separation in the presence of surfactants and hydrodynamics. Phys. Rev. E 52(6), 6908–6911 (1995)

    Article  Google Scholar 

  21. Qian, T.-Z., Wang, X.-P., Sheng, P.: A variational approach to the moving contact line hydrodynamics. J Fluid Mech. 564, 333–360 (2006)

    Article  MathSciNet  Google Scholar 

  22. Shen, J., Xue, J., Yang, J.: The scalar auxiliary variable (sav) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  Google Scholar 

  23. Shen, J., Yang, X.: Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows. Chin. Ann. Math. Ser. B 31(5), 743–758 (2010)

    Article  MathSciNet  Google Scholar 

  24. Shen, J., Yang, X.: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Disc. Conti. Dyn. Sys.-A 28, 1669–1691 (2010)

    Article  MathSciNet  Google Scholar 

  25. Shen, J., Yang, X.: A phase field model and its numerical approximation for two phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput. 32, 1159–1179 (2010)

    Article  MathSciNet  Google Scholar 

  26. Shen, J., Yang, X.: Decoupled energy stable schemes for phase filed models of two phase complex fluids. SIAM J. Sci. Comput. 36, B122–B145 (2014)

    Article  Google Scholar 

  27. Teng, C.H., Chern, I.L., Lai, M.C.: Simulating binary fluid-surfactant dynamics by a phase field model. Dis. Conti. Dyn, Syst.-B 17, 1289–1307 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Teramoto, T., Yonezawa, F.: Droplet growth dynamics in a water-oil-surfactant system. J. Colloid Inter. Sci. 235, 329–333 (2001)

    Article  Google Scholar 

  29. van der Sman, R., van der Graaf, S.: Diffuse interface model of surfactant adsorption onto flat and droplet interfaces. Rheol. Acta 46, 3–11 (2006)

    Article  Google Scholar 

  30. van der Sman, R.G.M., Meinders, MBJ.: Analysis of improved lattice boltzmann phase field method for soluble surfactants. Comput. Phys Comm. 199, 12–21 (2016)

    Article  MathSciNet  Google Scholar 

  31. Villain, J: Continuum models of crystal growth from atomic beams with and without desorption. Journal de physique I 1(1), 19–42 (1991)

    Article  Google Scholar 

  32. Yang, X.: Linear, First and second order and unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    Article  MathSciNet  Google Scholar 

  33. Yang, X.: Numerical approximations for the cahn-hilliard phase field model of the binary fluid-surfactant system. J. Sci. Comput 74, 1533–1553 (2017)

    Article  MathSciNet  Google Scholar 

  34. Yang, X., Ju, L.: Linear and unconditionally energy stable schemes for the binary fluid-surfactant phase field model. Comput. Meth. Appl. Mech. Engrg. 318, 1005–1029 (2017)

    Article  MathSciNet  Google Scholar 

  35. Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)

    Article  MathSciNet  Google Scholar 

  36. Yue, P., Feng, J., Liu, C., Shen, J.: A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293–317 (2005)

    Article  MathSciNet  Google Scholar 

  37. Zhang, J., Chen, C., Yang, X.: A novel decoupled and stable scheme for an anisotropic phase-field dendritic crystal growth model. Appl. Math Lett. 95, 122–129 (2019)

    Article  MathSciNet  Google Scholar 

  38. Zhang, J., Eckmann, D.M., Ayyaswamy, P.S.: A front tracking method for a deformable intravascular bubble in a tube with soluble surfactant transport. J. Comput. Phys. 214(1), 366–396 (2006)

    Article  Google Scholar 

  39. Zhao, J., Yang, X., Li, J., Wang, Q.: Energy stable numerical schemes for a hydrodynamic model of nematic liquid crystals. SIAM. J. Sci Comput. 38, A3264–A3290 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Funding

C. Xu is partially supported by NSFC-61872429. C. Chen was partially supported by Natural Science Foundation of China (11771375 and 11571297). X. Yang was partially supported by National Science Foundation with grant numbers DMS (1720212 and 1818783). X. Yang is partially supported by NSF DMS-1720212 and DMS-1818783.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanjun Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Chen, C. & Yang, X. Efficient, non-iterative, and decoupled numerical scheme for a new modified binary phase-field surfactant system. Numer Algor 86, 863–885 (2021). https://doi.org/10.1007/s11075-020-00915-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00915-8

Keywords