Abstract
Disk polynomials form a basis of orthogonal polynomials on the disk corresponding to the radial weight \({\alpha +1 \over \pi }(1-r^{2})^{\alpha }\). In this paper, the stability properties of disk polynomials are analyzed. A conditioning associated with the representation of the least squares approximation with respect to this basis is introduced and bounded. Among all disk polynomials, the least bounds are obtained for Zernike polynomials corresponding to α = 0.
Similar content being viewed by others
References
Askey, R.: Jacobi polynomial expansions with positive coefficients and imbeddings of projective spaces. Bull. Amer. Math. Soc. 74, 301–304 (1968)
Beals, R., Wong, R.: Special Functions and Orthogonal Polynomials Cambridge Studies in Advanced Mathematics, vol. 153. Cambridge University Press, Cambridge (2016)
Briani, M., Sommariva, A., Vianello, M.: Computing Fekete and Lebesgue points: simplex, square, disk. J. Comput. Appl. Math. 236, 2477–2486 (2012)
Carnicer, J.M., Godés, C.: Interpolation on the disk. Numer. Algor. 66, 1–16 (2014)
Carnicer, J.M., Khiar, Y., Peña, J.M.: Optimal stability of the Lagrange formula and conditioning of the Newton formula. J. Approx. Theory 238, 52–66 (2019)
Carnicer, J.M., Khiar, Y., Peña, J.M.: Conditioning of polynomial Fourier sums, Calcolo 56. Art. 24, 23 (2019)
Cuyt, A., Yaman, I., Ibrahimoglu, B.A., Benouahmane, B.: Radial orthogonality and Lebesgue constants on the disk. Numer. Algor. 61, 291–313 (2012)
Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables, Second Edition Encyclopedia of Mathematics and Its Applications, vol. 155. Cambridge University Press, Cambridge (2014)
Koornwinder, T.H.: The Addition Formula for Jacobi Polynomials II. The Laplace Type Integral and the Product Formula, Report TW 133/72, Mathematisch Centrum, Amsterdam, https://staff.fnwi.uva.nl/t.h.koornwinder/art/index.html#1972 (1972)
Koornwinder, T.H.: The Addition Formula for Jacobi Polynomials III. Completion of the Proof, Report TW 135/72, Mathematisch Centrum, Amsterdam, https://staff.fnwi.uva.nl/t.h.koornwinder/art/index.html#1972 (1972)
Koornwinder, T., Kostenko, A., Teschl, G.: Jacobi polynomials, Bernstein-type inequalities and dispersion estimates for the discrete Laguerre operator. Adv. Math. 333, 796–821 (2018)
Logan, B.F., Shepp, L.A.: Optimal reconstruction of a function from its projections. Duke. Math. J. 42, 645–659 (1975)
Lyche, T., Peña, J.M.: Optimally stable multivariate bases. Adv. Comput. Math. 20, 149–159 (2004)
Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge, Department of Commerce, Nationa Institute of Standards and Technology, Washington (2010)
Pap, M., Schipp, F.: Discrete orthogonality of Zernike functions. Mathematica Pannonica 16, 137–144 (2005)
Szegő, G.: Orthogonal Polynomials Colloquium Publ., vol. 23. American Mathematical Society, Providence, Rhode Island (2003)
Vasil, G.M., Burns, K.J., Lecoanet, D., Olver, S., Brown, B.P., Oishi, J.S.: Tensor calculus in polar coordinates using Jacobi polynomials. J. Comput. Phys. 325, 53–73 (2016)
Waldron, S.: Orthogonal polynomials on the disc. J. Approx. Theory 150, 117–131 (2008)
Waldron, S.: Continuous and discrete tight frames of orthogonal polynomials for a radially symmetric weight. Constr. Approx. 30, 33–52 (2009)
Wünsche, A.: Generalized Zernike or disc polynomials. J. Comput. Appl. Math. 174, 135–163 (2005)
Xu, Y.: Representation of reproducing kernels and the Lebesgue constants on the ball. J. Approx. Theory 112, 295–310 (2001)
Zernike, F.: Beugungstheorie des Schneidensverfahrens und seiner verbesserten Form, der Phasenkontrastmethode. Physica 1, 689–704 (1934)
Funding
This work has been partially supported by the PGC2018-096321-B-I00 Spanish Research Grant, by Gobierno de Aragó n E41_17R and Feder 2014-2020 “Construyendo Europa desde Aragón”.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Carnicer, J.M., Mainar, E. & Peña, J.M. Stability properties of disk polynomials. Numer Algor 87, 119–135 (2021). https://doi.org/10.1007/s11075-020-00960-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-020-00960-3