Abstract
We consider numerical simulation of blood flows in the artery using multilevel domain decomposition methods. Because of the complex geometry, the construction and the solve of the coarse problem take a large percentage of the total compute time in the multilevel method. In this paper, we introduce a one-dimensional central-line model of the blood flow and use its stabilized finite element discretization to construct a coarse preconditioner. With suitable restriction and extension operators, we obtain a two-level additive Schwarz preconditioner for two- and three-dimensional problems. We present some numerical experiments with different arteries to show the efficiency and robustness of the new coarse preconditioner whose computational cost is considerably lower than other coarse preconditioners constructed using the two- or three-dimensional geometry of the artery.
Similar content being viewed by others
References
Bai, Z. Z., Golub, G. H.: Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems. IMA J. Numer. Anal. 27 (1), 1–23 (2007)
Benzi, M., Gander, M. J., Golub, G. H.: Optimization of the Hermitian and skew-Hermitian splitting iteration for saddle-point problems. BIT Numer. Math. 43(5), 881–900 (2003)
Benzi, M., Golub, G. H.: A preconditioner for generalized saddle point problems. SIAM J. Matrix Anal. Appl. 26(1), 20–41 (2004)
Benzi, M., Golub, G. H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)
Bramble, J. H., Pasciak, J. E., Vassilev, A. T.: Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal. 34 (3), 1072–1092 (1997)
Čanić, S.: Blood flow through compliant vessels after endovascular repair: wall deformations induced by the discontinuous wall properties. Comput. Vis. Sci. 4(3), 147–155 (2002)
Douglas, J., Wang, J. P.: An absolutely stabilized finite element method for the Stokes problem. Math. Comput. 52(186), 495–508 (1989)
Elman, H. C.: Multigrid and Krylov subspace methods for the discrete Stokes equations. Int. J. Numer. Methods Fluids 22(8), 755–770 (1996)
Elman, H. C., Golub, G. H.: Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal. 31(6), 1645–1661 (1994)
Formaggia, L., Gerbeau, J. F., Nobile, F., Quarteroni, A.: On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 191(6-7), 561–582 (2001)
Formaggia, L., Lamponi, D., Quarteroni, A.: One-dimensional models for blood flow in arteries. J. Eng. Math. 47(3-4), 251–276 (2003)
Formaggia, L., Nobile, F., Quarteroni, A.: A One Dimensional Model for Blood Flow: Application to Vascular Prosthesis. In: Mathematical Modeling and Numerical Simulation in Continuum Mechanics, pp. 137–153. Springer (2002)
Formaggia, L., Nobile, F., Quarteroni, A., Veneziani, A.: Multiscale modelling of the circulatory system: a preliminary analysis. Comput. Vis. Sci. 2(2-3), 75–83 (1999)
Gander, M., Xu, Y.: Optimized Schwarz methods with nonoverlapping circular domain decomposition. Mathematics of Computation 86 (2017)
Gander, M. J., Xu, Y.: Optimized Schwarz methods for circular domain decompositions with overlap. SIAM J. Numer. Anal. 52(4), 1981–2004 (2014)
Gigante, G., Pozzoli, M., Vergara, C.: Optimized Schwarz methods for the diffusion-reaction problem with cylindrical interfaces. SIAM J. Numer. Anal. 51(6), 3402–3430 (2013)
Gunzburger, M. D.: Finite element methods for viscous incompressible flows: a guide to theory, practice, and algorithms. Elsevier (2012)
Hughes, T. J., Franca, L. P.: A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces. Comput. Methods Appl. Mech. Eng. 65(1), 85–96 (1987)
Hughes, T. J., Franca, L. P., Balestra, M.: A new finite element formulation for computational fluid dynamics: V. Circumventing the babuška-brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Eng. 59(1), 85–99 (1986)
Kim, H. H., Lee, C. O., Park, E. H.: A FETI-DP formulation for the Stokes problem without primal pressure components. SIAM J. Numer. Anal. 47(6), 4142–4162 (2010)
Klawonn, A.: An optimal preconditioner for a class of saddle point problems with a penalty term. SIAM J. Sci. Comput. 19(2), 540–552 (1998)
Klawonn, A.: Block-triangular preconditioners for saddle point problems with a penalty term. SIAM J. Sci. Comput. 19(1), 172–184 (1998)
Klawonn, A., Pavarino, L. F.: Overlapping Schwarz methods for mixed linear elasticity and Stokes problems. Comput. Methods Appl. Mech. Eng. 165(1-4), 233–245 (1998)
Klawonn, A., Pavarino, L. F.: A comparison of overlapping Schwarz methods and block preconditioners for saddle point problems. Numer. Linear Algebra Appl. 7(1), 1–25 (2000)
Kong, F., Cai, X. C.: A highly scalable multilevel Schwarz method with boundary geometry preserving coarse spaces for 3D elasticity problems on domains with complex geometry. SIAM J. Sci. Comput. 38(2), C73–C95 (2016)
Kong, F., Cai, X. C.: A scalable nonlinear fluid–structure interaction solver based on a Schwarz preconditioner with isogeometric unstructured coarse spaces in 3D. J. Comput. Phys. 340, 498–518 (2017)
Lee, J., Smith, N.: Development and application of a one-dimensional blood flow model for microvascular networks. Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 222(4), 487–511 (2008)
Li, J.: A dual-primal FETI method for incompressible Stokes equations. Numer. Math. 102(2), 257–275 (2005)
Li, J., Widlund, O.: BDDC Algorithms for incompressible Stokes equations. SIAM J. Numer. Anal. 44(6), 2432–2455 (2006)
Pavarino, L. F.: Indefinite overlapping Schwarz methods for time-dependent Stokes problems. Comput. Methods Appl. Mech. Eng. 187(1-2), 35–51 (2000)
Pavarino, L. F., Widlund, O.: Balancing Neumann-Neumann methods for incompressible Stokes equations. Commun. Pure Appl. Math. J. Issued Cour. Inst. Math. Sci. 55(3), 302–335 (2002)
Quarteroni, A., Formaggia, L.: Mathematical modelling and numerical simulation of the cardiovascular system. Handb. Numer. Anal. 12, 3–127 (2004)
Quarteroni, A., Manzoni, A., Vergara, C.: The cardiovascular system: mathematical modelling, numerical algorithms and clinical applications. Acta Numer. 26, 365–590 (2017)
Shapiro, A. H.: Steady flow in collapsible tubes. J. Biomech. Eng. 99(3), 126–147 (1977)
Sherwin, S., Formaggia, L., Peiro, J., Franke, V.: Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system. Int. J. Numer. Methods Fluids 43(6-7), 673–700 (2003)
Sherwin, S., Franke, V., Peiro, J., Parker, K.: One-dimensional modelling of a vascular network in space-time variables. J. Eng. Math. 47(3-4), 217–250 (2003)
Smith, N., Pullan, A., Hunter, P.: An anatomically based model of transient coronary blood flow in the heart. SIAM J. Appl. Math. 62(3), 990–1018 (2002)
Streeter, V. L., Keitzer, W. F., Bohr, D. F.: Pulsatile pressure and flow through distensible vessels. Circ. Res. 13(1), 3–20 (1963)
Toselli, A., Widlund, O.: Domain decomposition methods algorithms and theory. Springer, Berlin (2005)
Verfürth, R.: A multilevel algorithm for mixed problems. SIAM J. Numer. Anal. 21(2), 264–271 (1984)
Wittum, G.: Multi-grid methods for Stokes and Navier-Stokes equations. Numer. Math. 54(5), 543–563 (1989)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Liu, Y., Cai, XC. A central-line coarse preconditioner for Stokes flows in artery-like domains. Numer Algor 87, 137–160 (2021). https://doi.org/10.1007/s11075-020-00961-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-020-00961-2
Keywords
- Stokes problem
- Blood flow in artery
- Multilevel domain decomposition
- Central-line coarse space
- Finite element