Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A central-line coarse preconditioner for Stokes flows in artery-like domains

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We consider numerical simulation of blood flows in the artery using multilevel domain decomposition methods. Because of the complex geometry, the construction and the solve of the coarse problem take a large percentage of the total compute time in the multilevel method. In this paper, we introduce a one-dimensional central-line model of the blood flow and use its stabilized finite element discretization to construct a coarse preconditioner. With suitable restriction and extension operators, we obtain a two-level additive Schwarz preconditioner for two- and three-dimensional problems. We present some numerical experiments with different arteries to show the efficiency and robustness of the new coarse preconditioner whose computational cost is considerably lower than other coarse preconditioners constructed using the two- or three-dimensional geometry of the artery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bai, Z. Z., Golub, G. H.: Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems. IMA J. Numer. Anal. 27 (1), 1–23 (2007)

    Article  MathSciNet  Google Scholar 

  2. Benzi, M., Gander, M. J., Golub, G. H.: Optimization of the Hermitian and skew-Hermitian splitting iteration for saddle-point problems. BIT Numer. Math. 43(5), 881–900 (2003)

    Article  MathSciNet  Google Scholar 

  3. Benzi, M., Golub, G. H.: A preconditioner for generalized saddle point problems. SIAM J. Matrix Anal. Appl. 26(1), 20–41 (2004)

    Article  MathSciNet  Google Scholar 

  4. Benzi, M., Golub, G. H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005)

    Article  MathSciNet  Google Scholar 

  5. Bramble, J. H., Pasciak, J. E., Vassilev, A. T.: Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal. 34 (3), 1072–1092 (1997)

    Article  MathSciNet  Google Scholar 

  6. Čanić, S.: Blood flow through compliant vessels after endovascular repair: wall deformations induced by the discontinuous wall properties. Comput. Vis. Sci. 4(3), 147–155 (2002)

    Article  MathSciNet  Google Scholar 

  7. Douglas, J., Wang, J. P.: An absolutely stabilized finite element method for the Stokes problem. Math. Comput. 52(186), 495–508 (1989)

    Article  MathSciNet  Google Scholar 

  8. Elman, H. C.: Multigrid and Krylov subspace methods for the discrete Stokes equations. Int. J. Numer. Methods Fluids 22(8), 755–770 (1996)

    Article  Google Scholar 

  9. Elman, H. C., Golub, G. H.: Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal. 31(6), 1645–1661 (1994)

    Article  MathSciNet  Google Scholar 

  10. Formaggia, L., Gerbeau, J. F., Nobile, F., Quarteroni, A.: On the coupling of 3D and 1D Navier–Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 191(6-7), 561–582 (2001)

    Article  MathSciNet  Google Scholar 

  11. Formaggia, L., Lamponi, D., Quarteroni, A.: One-dimensional models for blood flow in arteries. J. Eng. Math. 47(3-4), 251–276 (2003)

    Article  MathSciNet  Google Scholar 

  12. Formaggia, L., Nobile, F., Quarteroni, A.: A One Dimensional Model for Blood Flow: Application to Vascular Prosthesis. In: Mathematical Modeling and Numerical Simulation in Continuum Mechanics, pp. 137–153. Springer (2002)

  13. Formaggia, L., Nobile, F., Quarteroni, A., Veneziani, A.: Multiscale modelling of the circulatory system: a preliminary analysis. Comput. Vis. Sci. 2(2-3), 75–83 (1999)

    Article  Google Scholar 

  14. Gander, M., Xu, Y.: Optimized Schwarz methods with nonoverlapping circular domain decomposition. Mathematics of Computation 86 (2017)

  15. Gander, M. J., Xu, Y.: Optimized Schwarz methods for circular domain decompositions with overlap. SIAM J. Numer. Anal. 52(4), 1981–2004 (2014)

    Article  MathSciNet  Google Scholar 

  16. Gigante, G., Pozzoli, M., Vergara, C.: Optimized Schwarz methods for the diffusion-reaction problem with cylindrical interfaces. SIAM J. Numer. Anal. 51(6), 3402–3430 (2013)

    Article  MathSciNet  Google Scholar 

  17. Gunzburger, M. D.: Finite element methods for viscous incompressible flows: a guide to theory, practice, and algorithms. Elsevier (2012)

  18. Hughes, T. J., Franca, L. P.: A new finite element formulation for computational fluid dynamics: VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces. Comput. Methods Appl. Mech. Eng. 65(1), 85–96 (1987)

    Article  MathSciNet  Google Scholar 

  19. Hughes, T. J., Franca, L. P., Balestra, M.: A new finite element formulation for computational fluid dynamics: V. Circumventing the babuška-brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. Eng. 59(1), 85–99 (1986)

    Article  Google Scholar 

  20. Kim, H. H., Lee, C. O., Park, E. H.: A FETI-DP formulation for the Stokes problem without primal pressure components. SIAM J. Numer. Anal. 47(6), 4142–4162 (2010)

    Article  MathSciNet  Google Scholar 

  21. Klawonn, A.: An optimal preconditioner for a class of saddle point problems with a penalty term. SIAM J. Sci. Comput. 19(2), 540–552 (1998)

    Article  MathSciNet  Google Scholar 

  22. Klawonn, A.: Block-triangular preconditioners for saddle point problems with a penalty term. SIAM J. Sci. Comput. 19(1), 172–184 (1998)

    Article  MathSciNet  Google Scholar 

  23. Klawonn, A., Pavarino, L. F.: Overlapping Schwarz methods for mixed linear elasticity and Stokes problems. Comput. Methods Appl. Mech. Eng. 165(1-4), 233–245 (1998)

    Article  MathSciNet  Google Scholar 

  24. Klawonn, A., Pavarino, L. F.: A comparison of overlapping Schwarz methods and block preconditioners for saddle point problems. Numer. Linear Algebra Appl. 7(1), 1–25 (2000)

    Article  MathSciNet  Google Scholar 

  25. Kong, F., Cai, X. C.: A highly scalable multilevel Schwarz method with boundary geometry preserving coarse spaces for 3D elasticity problems on domains with complex geometry. SIAM J. Sci. Comput. 38(2), C73–C95 (2016)

    Article  MathSciNet  Google Scholar 

  26. Kong, F., Cai, X. C.: A scalable nonlinear fluid–structure interaction solver based on a Schwarz preconditioner with isogeometric unstructured coarse spaces in 3D. J. Comput. Phys. 340, 498–518 (2017)

    Article  MathSciNet  Google Scholar 

  27. Lee, J., Smith, N.: Development and application of a one-dimensional blood flow model for microvascular networks. Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 222(4), 487–511 (2008)

    Article  Google Scholar 

  28. Li, J.: A dual-primal FETI method for incompressible Stokes equations. Numer. Math. 102(2), 257–275 (2005)

    Article  MathSciNet  Google Scholar 

  29. Li, J., Widlund, O.: BDDC Algorithms for incompressible Stokes equations. SIAM J. Numer. Anal. 44(6), 2432–2455 (2006)

    Article  MathSciNet  Google Scholar 

  30. Pavarino, L. F.: Indefinite overlapping Schwarz methods for time-dependent Stokes problems. Comput. Methods Appl. Mech. Eng. 187(1-2), 35–51 (2000)

    Article  MathSciNet  Google Scholar 

  31. Pavarino, L. F., Widlund, O.: Balancing Neumann-Neumann methods for incompressible Stokes equations. Commun. Pure Appl. Math. J. Issued Cour. Inst. Math. Sci. 55(3), 302–335 (2002)

    Article  MathSciNet  Google Scholar 

  32. Quarteroni, A., Formaggia, L.: Mathematical modelling and numerical simulation of the cardiovascular system. Handb. Numer. Anal. 12, 3–127 (2004)

    MathSciNet  Google Scholar 

  33. Quarteroni, A., Manzoni, A., Vergara, C.: The cardiovascular system: mathematical modelling, numerical algorithms and clinical applications. Acta Numer. 26, 365–590 (2017)

    Article  MathSciNet  Google Scholar 

  34. Shapiro, A. H.: Steady flow in collapsible tubes. J. Biomech. Eng. 99(3), 126–147 (1977)

    Article  Google Scholar 

  35. Sherwin, S., Formaggia, L., Peiro, J., Franke, V.: Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system. Int. J. Numer. Methods Fluids 43(6-7), 673–700 (2003)

    Article  MathSciNet  Google Scholar 

  36. Sherwin, S., Franke, V., Peiro, J., Parker, K.: One-dimensional modelling of a vascular network in space-time variables. J. Eng. Math. 47(3-4), 217–250 (2003)

    Article  MathSciNet  Google Scholar 

  37. Smith, N., Pullan, A., Hunter, P.: An anatomically based model of transient coronary blood flow in the heart. SIAM J. Appl. Math. 62(3), 990–1018 (2002)

    Article  MathSciNet  Google Scholar 

  38. Streeter, V. L., Keitzer, W. F., Bohr, D. F.: Pulsatile pressure and flow through distensible vessels. Circ. Res. 13(1), 3–20 (1963)

    Article  Google Scholar 

  39. Toselli, A., Widlund, O.: Domain decomposition methods algorithms and theory. Springer, Berlin (2005)

  40. Verfürth, R.: A multilevel algorithm for mixed problems. SIAM J. Numer. Anal. 21(2), 264–271 (1984)

    Article  MathSciNet  Google Scholar 

  41. Wittum, G.: Multi-grid methods for Stokes and Navier-Stokes equations. Numer. Math. 54(5), 543–563 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Chuan Cai.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Cai, XC. A central-line coarse preconditioner for Stokes flows in artery-like domains. Numer Algor 87, 137–160 (2021). https://doi.org/10.1007/s11075-020-00961-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00961-2

Keywords

Mathematics subject classification (2010)