Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Tensor extrapolation methods with applications

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we mainly develop the well-known vector and matrix polynomial extrapolation methods in tensor framework. To this end, some new products between tensors are defined and the concept of positive definitiveness is extended for tensors corresponding to T-product. Furthermore, we discuss on the solution of least-squares problem associated with a tensor equation using Tensor Singular Value Decomposition (TSVD). Motivated by the effectiveness of some proposed vector extrapolation methods in earlier papers, we describe how an extrapolation technique can be also implemented on the sequence of tensors produced by truncated TSVD (TTSVD) for solving possibly ill-posed tensor equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bentbib, A.H., El Guide, M., Jbilou, K., Onunwor, E., Reichel, L.: Solution methods for linear discrete ill-posed problems for color image restoration. BIT Numer. Math. 58, 555–578 (2018)

    Article  MathSciNet  Google Scholar 

  2. Bouyouli, R., Jbilou, K., Sadaka, R., Sadok, H.: Convergence properties of some block Krylov subspace methods for multiple linear systems. J. Comput. Appl. Math. 196, 498–511 (2006)

    Article  MathSciNet  Google Scholar 

  3. Braman, K.: Third-order tensors as linear operators on a space of matrices. Linear Algebra Appl. 433, 1241–1253 (2010)

    Article  MathSciNet  Google Scholar 

  4. Brezinski, C.: Généralisation de la transformation de Shanks, de la table de padéé et l’epsilon algorithm. Calcolo 12, 317–360 (1975)

    Article  MathSciNet  Google Scholar 

  5. Cabay, S., Jackson, L.W.: A polynomial extrapolation method for finding limits and antilimits for vector sequences. SIAM J. Numer. Anal. 13, 734–752 (1976)

    Article  MathSciNet  Google Scholar 

  6. Chan, R., Jin, X.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)

    Book  Google Scholar 

  7. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd ed. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  8. Hao, N., Kilmer, M.E., Braman, K., Hoover, R.C.: Facial recognition using tensor-tensor decompositions. SIAM J. Imaging Sci. 6, 437–463 (2013)

    Article  MathSciNet  Google Scholar 

  9. Hansen, P.C.: Rank-Deficient And discrete Ill-Posed problems. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  10. Hansen, P.C.: Regularization tools version 4.0 for MATLAB 7.3. Numer. Algorithms 46, 189–194 (2007)

    Article  MathSciNet  Google Scholar 

  11. Jbilou, K., Messaoudi, A.: Block extrapolation methods with applications. Appl. Numer. Math. 106, 154–164 (2016)

    Article  MathSciNet  Google Scholar 

  12. Jbilou, K., Sadok, H.: LU-Implementation of the modified minimal polynomial extrapolation method. IMA J. Numer. Anal. 19, 549–561 (1999)

    Article  MathSciNet  Google Scholar 

  13. Jbilou, K., Messaoudi, A., Sadok, H.: Global FOM and GMRES algorithms for matrix equations. Appl. Numer. Math. 31, 49–63 (1999)

    Article  MathSciNet  Google Scholar 

  14. Jbilou, K., Sadok, H.: Matrix polynomial and epsilon-type extrapolation methods with applications. Numer. Algorithms 68, 107–119 (2015)

    Article  MathSciNet  Google Scholar 

  15. Jbilou, K., Reichel, L., Sadok, H.: Vector extrapolation enhanced TSVD for linear discrete ill-posed problems. Numer. Algorithms 51, 195–208 (2009)

    Article  MathSciNet  Google Scholar 

  16. Kalyani, M.N., Beik, F.P.A., Jbilou, K.: On global iterative schemes based on Hessenberg process for (ill-posed) Sylvester tensor equations. J. Comput. Appl. Math. 373, 112216 (2020)

    Article  MathSciNet  Google Scholar 

  17. Kilmer, M.E., Braman, K., Hao, N., Hoover, R.C.: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 34, 148–172 (2013)

    Article  MathSciNet  Google Scholar 

  18. Kilmer, M.E., Martin, C.D.: Factorization strategies for third-order tensors. Linear Algebra Appl. 435, 641–658 (2011)

    Article  MathSciNet  Google Scholar 

  19. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)

    Article  MathSciNet  Google Scholar 

  20. Li, F., Ng, M.K., Plemmons, R.J.: Coupled segmentation and denoising/deblurring for hyperspectral material identification. Numer. Lin. Alg. Appl. 19, 153–173 (2012)

    Article  MathSciNet  Google Scholar 

  21. Li, N., Navasca, C., Glenn, C.: Iterative methods for symmetric outer product tensor decomposition. Electron. Trans. Numer. Anal. 44, 124–139 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Long, Z., Liu, Y, Chen, L., Zhu, C.: Low rank tensor completion for multiway visual data. Sig. Proc. 155, 301–316 (2019)

    Article  Google Scholar 

  23. Lu, C., Feng, J., Chen, Y., Liu, W., Yan, S.: Tensor robust principal component analysis with a new tensor nuclear norm. arXiv:1804.03728 (2019)

  24. Mesina, M.: Convergence acceleration for the iterative solution of x = Ax + f. Comput. Meth. Appl. Mech. Engrg. 10, 165–173 (1977)

    Article  MathSciNet  Google Scholar 

  25. Miao, Y., Qi, L., Wei, Y.: Generalized Tensor Function via the Tensor Singular Value Decomposition based on the T-Product. Lin. Alg. Appl. 590, 258–303 (2020)

    Article  MathSciNet  Google Scholar 

  26. Pugatchev, B.P.: Acceleration of the convergence of iterative processes and a method for solving systems of nonlinear equations. USSR Comp. Math. Phys. 17, 199–207 (1977)

    Article  MathSciNet  Google Scholar 

  27. Sidi, A., Ford, W.F., Smith, D.A.: Acceleration of convergence of vector sequences. SIAM J. Numer. Anal. 23, 178–196 (1986)

    Article  MathSciNet  Google Scholar 

  28. Sidi, A.: Convergence and stability of minimal polynomial and reduced rank extrapolation algorithms. SIAM J. Numer. Anal. 23, 197–209 (1986)

    Article  MathSciNet  Google Scholar 

  29. Signoretto, M., Van de Plas, R., De Moor, B., Suykens, J.A.K.: Tensor versus matrix completion: a comparison with application to spectral data. IEEE Signal Process. Lett. 18, 403–406 (2011)

  30. Wynn, P.: Acceleration technique for iterated vector and matrix problems. Math. Comp. 16, 301–322 (1962)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere thanks to the anonymous referee for his/her useful comments which improved the quality of paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Jbilou.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beik, F.P.A., Ichi, A.E., Jbilou, K. et al. Tensor extrapolation methods with applications. Numer Algor 87, 1421–1444 (2021). https://doi.org/10.1007/s11075-020-01013-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-01013-5

Keywords

Mathematics Subject Classification (2010)