Abstract
In this paper, we mainly develop the well-known vector and matrix polynomial extrapolation methods in tensor framework. To this end, some new products between tensors are defined and the concept of positive definitiveness is extended for tensors corresponding to T-product. Furthermore, we discuss on the solution of least-squares problem associated with a tensor equation using Tensor Singular Value Decomposition (TSVD). Motivated by the effectiveness of some proposed vector extrapolation methods in earlier papers, we describe how an extrapolation technique can be also implemented on the sequence of tensors produced by truncated TSVD (TTSVD) for solving possibly ill-posed tensor equations.
Similar content being viewed by others
References
Bentbib, A.H., El Guide, M., Jbilou, K., Onunwor, E., Reichel, L.: Solution methods for linear discrete ill-posed problems for color image restoration. BIT Numer. Math. 58, 555–578 (2018)
Bouyouli, R., Jbilou, K., Sadaka, R., Sadok, H.: Convergence properties of some block Krylov subspace methods for multiple linear systems. J. Comput. Appl. Math. 196, 498–511 (2006)
Braman, K.: Third-order tensors as linear operators on a space of matrices. Linear Algebra Appl. 433, 1241–1253 (2010)
Brezinski, C.: Généralisation de la transformation de Shanks, de la table de padéé et l’epsilon algorithm. Calcolo 12, 317–360 (1975)
Cabay, S., Jackson, L.W.: A polynomial extrapolation method for finding limits and antilimits for vector sequences. SIAM J. Numer. Anal. 13, 734–752 (1976)
Chan, R., Jin, X.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)
Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd ed. Johns Hopkins University Press, Baltimore (1996)
Hao, N., Kilmer, M.E., Braman, K., Hoover, R.C.: Facial recognition using tensor-tensor decompositions. SIAM J. Imaging Sci. 6, 437–463 (2013)
Hansen, P.C.: Rank-Deficient And discrete Ill-Posed problems. SIAM, Philadelphia (1998)
Hansen, P.C.: Regularization tools version 4.0 for MATLAB 7.3. Numer. Algorithms 46, 189–194 (2007)
Jbilou, K., Messaoudi, A.: Block extrapolation methods with applications. Appl. Numer. Math. 106, 154–164 (2016)
Jbilou, K., Sadok, H.: LU-Implementation of the modified minimal polynomial extrapolation method. IMA J. Numer. Anal. 19, 549–561 (1999)
Jbilou, K., Messaoudi, A., Sadok, H.: Global FOM and GMRES algorithms for matrix equations. Appl. Numer. Math. 31, 49–63 (1999)
Jbilou, K., Sadok, H.: Matrix polynomial and epsilon-type extrapolation methods with applications. Numer. Algorithms 68, 107–119 (2015)
Jbilou, K., Reichel, L., Sadok, H.: Vector extrapolation enhanced TSVD for linear discrete ill-posed problems. Numer. Algorithms 51, 195–208 (2009)
Kalyani, M.N., Beik, F.P.A., Jbilou, K.: On global iterative schemes based on Hessenberg process for (ill-posed) Sylvester tensor equations. J. Comput. Appl. Math. 373, 112216 (2020)
Kilmer, M.E., Braman, K., Hao, N., Hoover, R.C.: Third-order tensors as operators on matrices: a theoretical and computational framework with applications in imaging. SIAM J. Matrix Anal. Appl. 34, 148–172 (2013)
Kilmer, M.E., Martin, C.D.: Factorization strategies for third-order tensors. Linear Algebra Appl. 435, 641–658 (2011)
Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)
Li, F., Ng, M.K., Plemmons, R.J.: Coupled segmentation and denoising/deblurring for hyperspectral material identification. Numer. Lin. Alg. Appl. 19, 153–173 (2012)
Li, N., Navasca, C., Glenn, C.: Iterative methods for symmetric outer product tensor decomposition. Electron. Trans. Numer. Anal. 44, 124–139 (2015)
Long, Z., Liu, Y, Chen, L., Zhu, C.: Low rank tensor completion for multiway visual data. Sig. Proc. 155, 301–316 (2019)
Lu, C., Feng, J., Chen, Y., Liu, W., Yan, S.: Tensor robust principal component analysis with a new tensor nuclear norm. arXiv:1804.03728 (2019)
Mesina, M.: Convergence acceleration for the iterative solution of x = Ax + f. Comput. Meth. Appl. Mech. Engrg. 10, 165–173 (1977)
Miao, Y., Qi, L., Wei, Y.: Generalized Tensor Function via the Tensor Singular Value Decomposition based on the T-Product. Lin. Alg. Appl. 590, 258–303 (2020)
Pugatchev, B.P.: Acceleration of the convergence of iterative processes and a method for solving systems of nonlinear equations. USSR Comp. Math. Phys. 17, 199–207 (1977)
Sidi, A., Ford, W.F., Smith, D.A.: Acceleration of convergence of vector sequences. SIAM J. Numer. Anal. 23, 178–196 (1986)
Sidi, A.: Convergence and stability of minimal polynomial and reduced rank extrapolation algorithms. SIAM J. Numer. Anal. 23, 197–209 (1986)
Signoretto, M., Van de Plas, R., De Moor, B., Suykens, J.A.K.: Tensor versus matrix completion: a comparison with application to spectral data. IEEE Signal Process. Lett. 18, 403–406 (2011)
Wynn, P.: Acceleration technique for iterated vector and matrix problems. Math. Comp. 16, 301–322 (1962)
Acknowledgments
The authors would like to express their sincere thanks to the anonymous referee for his/her useful comments which improved the quality of paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Beik, F.P.A., Ichi, A.E., Jbilou, K. et al. Tensor extrapolation methods with applications. Numer Algor 87, 1421–1444 (2021). https://doi.org/10.1007/s11075-020-01013-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-020-01013-5