Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Hessenberg-type algorithm for computing PageRank Problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

PageRank is a widespread model for analysing the relative relevance of nodes within large graphs arising in several applications. In the current paper, we present a cost-effective Hessenberg-type method built upon the Hessenberg process for the solution of difficult PageRank problems. The new method is very competitive with other popular algorithms in this field, such as Arnoldi-type methods, especially when the damping factor is close to 1 and the dimension of the search subspace is large. The convergence and the complexity of the proposed algorithm are investigated. Numerical experiments are reported to show the efficiency of the new solver for practical PageRank computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Here, we give its executable codes in the website: https://github.com/Hsien-Ming-Ku/PageRank-Hessenberghttps://github.com/Hsien-Ming-Ku/PageRank-Hessenberg.

  2. See the details from https://developer.nvidia.com/blog/six-ways-saxpy/.

  3. Numerical results with the IDR(s)-based PageRank method are omitted due to its unsatisfactory performance for large values of s and m. However, the MATLAB code of the IDR(s)-based PageRank method is still included in our GitHub repository: https://github.com/Hsien-Ming-Ku/PageRank-Hessenberg for testing purposes.

  4. In fact, the restart number is often chosen in the PageRank literature as m ≤ 10 [27, 30, 31].

References

  1. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web, Technical Report No. 1999-66, Stanford InfoLab., Jan. 29, 1999, 17 pages. Available online at: http://ilpubs.stanford.edu:8090/422/

  2. Kamvar, S.D., Haveliwala, T.H., Manning, C.D., Golub, G.H.: Extrapolation methods for accelerating PageRank computations, in: WWW ’03 Proceedings of the 12th international conference on World Wide Web, Budapest, Hungary, May 20-24, 2003, ACM New York, NY (2003): 261–270. https://doi.org/10.1145/775152.775190

  3. Kamvar, S., Haveliwala, T., Golub, G.: Adaptive methods for the computation of PageRank, Linear Algebra Appl., 386 (2004): 51–65

  4. Langville, A.N., Meyer, C.D.: Deeper inside PageRank, Internet Math., 1(3) (2005): 335–380

  5. Langville, A.N., Meyer, C.D.: A survey of eigenvector methods of web information retrieval, SIAM Rev., 47(1) (2005): 135–161

  6. Berkhin, P.: A survey on PageRank computing, Internet Math., 2(1) (2005): 73–120

  7. Langville, A.N., Meyer, C.D.: Google’s PageRank and beyond: the Science of Search Engine Rankings, Princeton University Press, Princeton, NJ (2006)

  8. Gleich, D.F.: PageRank beyond the web, SIAM Rev., 57(3) (2015): 321–363

  9. Bryan, K., Leise, T.: The 25,000,000,000 eigenvector: the linear algebra behind Google, SIAM Rev., 48(3) (2006): 569–581

  10. Cicone, A., Serra-Capizzano, S.: Google PageRanking problem: the model and the analysis, J. Comput. Appl. Math., 234(11) (2010): 3140–3169

  11. Avrachenkov, K., Litvak, N., Nemirovsky, D., Osipova, N.: Monte Carlo methods in PageRank computation: when one iteration is sufficient, SIAM J. Numer. Anal., 45(2) (2007): 890–904

  12. Liu, W., Li, G., Cheng, J.: Fast PageRank approximation by adaptive sampling, Knowl. Inf. Syst., 42(1) (2015): 127–146

  13. Tan, X.: A new extrapolation method for PageRank computations, J. Comput. Appl. Math., 313 (2017): 383–392

  14. Langville, A.N., Meyer, C.D.: A reordering for the PageRank problem, SIAM J. Sci. Comput., 27(6) (2006): 2112–2120

  15. Lin, Y., Shi, X., Wei, Y.: On computing PageRank via lumping the Google matrix, J. Comput. Appl. Math., 224(2) (2009): 702–708

  16. Gleich, D.F., Gray, A.P., Greif, C., Lau, T.: An inner-outer iteration for computing PageRank, SIAM J. Sci. Comput., 32(1) (2010): 349–371

  17. Heyouni, M., Sadok, H.: On a variable smoothing procedure for Krylov subspace methods, Linear Algebra Appl., 268 (1998): 131–149

  18. Saad, Y.: Numerical methods for large eigenvalue problems (Revised Ed.), SIAM, Philadelphia, PA (2011)

  19. Jia, Z.: Refined iterative algorithms based on Arnoldi’s process for large unsymmetric eigenproblems, Linear Algebra Appl., 259 (1997): 1–23

  20. Jia, Z.: Polynomial characterizations of the approximate eigenvectors by the refined Arnoldi method and an implicitly restarted refined Arnoldi algorithm, Linear Algebra Appl., 287(1-3) (1999): 191–214

  21. Jia, Z.: A refined subspace iteration algorithm for large sparse eigenproblems, Appl. Numer. Math., 32(1) (2000): 35–52

  22. Golub, G.H., Greif, C.: An Arnoldi-type algorithm for computing page rank, BIT, 46(4) (2006): 759–771

  23. Wu, G., Wei, Y.: A Power-Arnoldi algorithm for computing PageRank, Numer. Linear Algebra Appl., 14(7) (2007): 521–546

  24. Yin, G.-J., Yin, J.-F.: On Arnoldi method accelerating PageRank cmputations, in: Web Information Systems and Mining. WISM 2010 (F.-L. Wang, Z. Gong, X. Luo, J. Lei, eds.), Lecture Notes in Computer Science, vol 6318, Springer, Berlin, Heidelberg (2010): 378–385. https://doi.org/10.1007/978-3-642-16515-3_47

  25. Wu, G., Zhang, Y., Wei, Y.: Accelerating the Arnoldi-type algorithm for the PageRank problem and the ProteinRank problem, J. Sci. Comput., 57(1) (2013): 74–104

  26. Wu, G., Wei, Y.: An Arnoldi-extrapolation algorithm for computing PageRank, J. Comput. Appl. Math., 234(11) (2010): 3196–3212

  27. Gu, C., Wang, W.: An Arnoldi-Inout algorithm for computing PageRank problems, J. Comput. Appl. Math., 309 (2017): 219–229

  28. Yin, J.-F., Yin, G.-J., Ng, M.: On adaptively accelerated Arnoldi method for computing PageRank, Numer. Linear Algebra Appl., 19(1) (2012): 73–85

  29. Freund, R.W., Hochbruck, M.: On the use of two QMR algorithms for solving singular systems and applications in Markov chain modeling, Numer. Linear Algebra Appl., 1(4) (1994): 403–420

  30. Teramoto, K., Nodera, T.: A note on Lanczos algorithm for computing PageRank, in: Forging Connections between Computational Mathematics and Computational Geometry (K. Chen, A. Ravindran, eds.), Springer Proceedings in Mathematics & Statistics, Vol. 124, Springer, Cham, Switzerland (2016): 25–33. https://doi.org/10.5176/2251-1911_CMCGS14.15_3

  31. Wu, G., Wang, Y.-C., Jin, X.-Q.: A preconditioned and shifted GMRES algorithm for the PageRank problem with multiple damping factors, SIAM J. Sci. Comput., 34(5) (2012): A2558–A2575

  32. Wu, G., Wei, Y.: Arnoldi versus GMRES for computing pageRank: A theoretical contribution to google’s pageRank problem, ACM Trans Inf. Syst., 28(3) (2010): 11. https://doi.org/10.1145/1777432.1777434https://doi.org/10.1145/1777432.1777434

  33. Hessenberg, K.: Behandlung Linearer Eigenwertaufgaben Mit Hilfe Der Hamilton-Cayleyschen Gleichung, Numerische Verfahren, Bericht 1, Institut Für Praktische Mathematik (IPM), Technische Hochschule Darmstadt. The scanned report and a biographical sketch of Karl Hessenberg’s life are available at. http://www.hessenberg.de/karl1.html (1940)

  34. Wilkinson, J.H.: The algebraic eigenvalue problem, Clarendon Press, Oxford, UK (1965)

  35. Sadok, H.: CMRH: a new method for solving nonsymmetric linear systems based on the Hessenberg reduction algorithm. Numer. Algorithms 20 (4), 303–321 (1999)

    Article  MathSciNet  Google Scholar 

  36. Stephens, D.: ELMRES: An oblique projection method to solve sparse non-symmetric linear systems (Ph.D Dissertation), Florida Institute of Technology, Melbourne USA. http://ncsu.edu/hpc/Documents/Publications/gary_howell/stephens.pdf (1999)

  37. Householder, A.S., Bauer, F.L.: On certain methods for expanding the characteristic polynomial, Numer. Math., 1(1) (1959): 29–37

  38. Sadok, H., Szyld, D.B.: A new look at CMRH and its relation to GMRES, BIT, 52(2) (2012): 485–501

  39. Heyouni, M., Sadok, H.: A new implementation of the CMRH method for solving dense linear systems, J. Comput. Appl. Math., 213(2) (2008): 387–399

  40. Zhang, K., Gu, C.: Flexible global generalized Hessenberg methods for linear systems with multiple right-hand sides, J. Comput. Appl. Math., 263 (2014): 312–325

  41. Heyouni, M.: The global Hessenberg and CMRH methods for linear systems with multiple right-hand sides, Numer. Algorithms, 26(4) (2001): 317–332

  42. Heyouni, M., Essai, A.: Matrix Krylov subspace methods for linear systems with multiple right-hand sides, Numer. Algorithms, 40(2) (2005): 137–156

  43. Amini, S., Toutounian, F., Gachpazan, M.: The block CMRH method for solving nonsymmetric linear systems with multiple right-hand sides, J. Comput. Appl. Math., 337 (2018): 166–174

  44. Amini, S., Toutounian, F.: Weighted and flexible versions of block CMRH method for solving nonsymmetric linear systems with multiple right-hand sides. Comput. Math. Appl. 76(8), 2011–2021 (2018)

    Article  MathSciNet  Google Scholar 

  45. Gu, X.-M., Huang, T.-Z., Yin, G., Carpentieri, B., Wen, C., Du, L.: Restarted Hessenberg method for solving shifted nonsymmetric linear systems, J. Comput. Appl. Math., 331 (2018): 166–177

  46. Gu, X.-M., Huang, T.-Z., Carpentieri, B., Imakura, A., Zhang, K., Du, L.: Efficient variants of the CMRH method for solving a sequence of multi-shifted non-Hermitian linear systems simultaneously, J. Comput. Appl. Math., 375 (2020): 112788. https://doi.org/10.1016/j.cam.2020.112788

  47. Ramezani, Z., Toutounian, F.: Extended and rational Hessenberg methods for the evaluation of matrix functions, BIT, 59(2) (2019): 523–545

  48. Addam, M., Heyouni, M., Sadok, H.: The block Hessenberg process for matrix equations, Electron. Trans. Numer. Anal., 46 (2017): 460–473

  49. Heyouni, M., Saberi-Movahed, F., Tajaddini, A.: On global Hessenberg based methods for solving Sylvester matrix equations, Comput. Math. Appl., 77(1) (2019): 77–92

  50. Businger, P.A.: Reducing a matrix to Hessenberg form, Math. Comp., 23(108) (1969): 819–821

  51. Heyouni, M.: Newton Generalized Hessenberg method for solving nonlinear systems of equations, Numer. Algorithms, 21(1-4) (1999): 225–246

  52. Astudillo, R., van Gijzen, M.B.: A restarted induced dimension reduction method to approximate eigenpairs of large unsymmetric matrices, J. Comput. Appl. Math., 296 (2016): 24–35

  53. Gutknecht, M.H., Zemke, J.-P.M.: Eigenvalue computations based on IDR, SIAM J. Matrix Anal. Appl., 34(2) (2013): 283–311

Download references

Acknowledgements

The authors would like to thank Prof. Zhongxiao Jia for his comments about the strategy used in the refined Arnoldi algorithm. Meanwhile, the authors are grateful to Dr. Reinaldo Astudillo (ASML Holding N.V.) for his kind suggestions about executing the IDR-based Hessenberg decompositions used in Section 2.2.

Funding

This research is supported by NSFC (11601323 and 11801463), the Applied Basic Research Program of Sichuan Province (2020YJ0007), and the research grants MYRG2018-00025-FST, MYRG2020-00208-FST from University of Macau. The last author is member of the Gruppo Nazionale per il Calcolo Scientifico (GNCS) of the Istituto Nazionale di Alta Matematica (INdAM) and his work was partially supported by INdAM-GNCS under Progetti di Ricerca 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siu-Long Lei.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, XM., Lei, SL., Zhang, K. et al. A Hessenberg-type algorithm for computing PageRank Problems. Numer Algor 89, 1845–1863 (2022). https://doi.org/10.1007/s11075-021-01175-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-021-01175-w

Keywords

Mathematics Subject Classification (2010)