Abstract
PageRank is a widespread model for analysing the relative relevance of nodes within large graphs arising in several applications. In the current paper, we present a cost-effective Hessenberg-type method built upon the Hessenberg process for the solution of difficult PageRank problems. The new method is very competitive with other popular algorithms in this field, such as Arnoldi-type methods, especially when the damping factor is close to 1 and the dimension of the search subspace is large. The convergence and the complexity of the proposed algorithm are investigated. Numerical experiments are reported to show the efficiency of the new solver for practical PageRank computations.
Similar content being viewed by others
Notes
Here, we give its executable codes in the website: https://github.com/Hsien-Ming-Ku/PageRank-Hessenberghttps://github.com/Hsien-Ming-Ku/PageRank-Hessenberg.
See the details from https://developer.nvidia.com/blog/six-ways-saxpy/.
Numerical results with the IDR(s)-based PageRank method are omitted due to its unsatisfactory performance for large values of s and m. However, the MATLAB code of the IDR(s)-based PageRank method is still included in our GitHub repository: https://github.com/Hsien-Ming-Ku/PageRank-Hessenberg for testing purposes.
References
Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web, Technical Report No. 1999-66, Stanford InfoLab., Jan. 29, 1999, 17 pages. Available online at: http://ilpubs.stanford.edu:8090/422/
Kamvar, S.D., Haveliwala, T.H., Manning, C.D., Golub, G.H.: Extrapolation methods for accelerating PageRank computations, in: WWW ’03 Proceedings of the 12th international conference on World Wide Web, Budapest, Hungary, May 20-24, 2003, ACM New York, NY (2003): 261–270. https://doi.org/10.1145/775152.775190
Kamvar, S., Haveliwala, T., Golub, G.: Adaptive methods for the computation of PageRank, Linear Algebra Appl., 386 (2004): 51–65
Langville, A.N., Meyer, C.D.: Deeper inside PageRank, Internet Math., 1(3) (2005): 335–380
Langville, A.N., Meyer, C.D.: A survey of eigenvector methods of web information retrieval, SIAM Rev., 47(1) (2005): 135–161
Berkhin, P.: A survey on PageRank computing, Internet Math., 2(1) (2005): 73–120
Langville, A.N., Meyer, C.D.: Google’s PageRank and beyond: the Science of Search Engine Rankings, Princeton University Press, Princeton, NJ (2006)
Gleich, D.F.: PageRank beyond the web, SIAM Rev., 57(3) (2015): 321–363
Bryan, K., Leise, T.: The 25,000,000,000 eigenvector: the linear algebra behind Google, SIAM Rev., 48(3) (2006): 569–581
Cicone, A., Serra-Capizzano, S.: Google PageRanking problem: the model and the analysis, J. Comput. Appl. Math., 234(11) (2010): 3140–3169
Avrachenkov, K., Litvak, N., Nemirovsky, D., Osipova, N.: Monte Carlo methods in PageRank computation: when one iteration is sufficient, SIAM J. Numer. Anal., 45(2) (2007): 890–904
Liu, W., Li, G., Cheng, J.: Fast PageRank approximation by adaptive sampling, Knowl. Inf. Syst., 42(1) (2015): 127–146
Tan, X.: A new extrapolation method for PageRank computations, J. Comput. Appl. Math., 313 (2017): 383–392
Langville, A.N., Meyer, C.D.: A reordering for the PageRank problem, SIAM J. Sci. Comput., 27(6) (2006): 2112–2120
Lin, Y., Shi, X., Wei, Y.: On computing PageRank via lumping the Google matrix, J. Comput. Appl. Math., 224(2) (2009): 702–708
Gleich, D.F., Gray, A.P., Greif, C., Lau, T.: An inner-outer iteration for computing PageRank, SIAM J. Sci. Comput., 32(1) (2010): 349–371
Heyouni, M., Sadok, H.: On a variable smoothing procedure for Krylov subspace methods, Linear Algebra Appl., 268 (1998): 131–149
Saad, Y.: Numerical methods for large eigenvalue problems (Revised Ed.), SIAM, Philadelphia, PA (2011)
Jia, Z.: Refined iterative algorithms based on Arnoldi’s process for large unsymmetric eigenproblems, Linear Algebra Appl., 259 (1997): 1–23
Jia, Z.: Polynomial characterizations of the approximate eigenvectors by the refined Arnoldi method and an implicitly restarted refined Arnoldi algorithm, Linear Algebra Appl., 287(1-3) (1999): 191–214
Jia, Z.: A refined subspace iteration algorithm for large sparse eigenproblems, Appl. Numer. Math., 32(1) (2000): 35–52
Golub, G.H., Greif, C.: An Arnoldi-type algorithm for computing page rank, BIT, 46(4) (2006): 759–771
Wu, G., Wei, Y.: A Power-Arnoldi algorithm for computing PageRank, Numer. Linear Algebra Appl., 14(7) (2007): 521–546
Yin, G.-J., Yin, J.-F.: On Arnoldi method accelerating PageRank cmputations, in: Web Information Systems and Mining. WISM 2010 (F.-L. Wang, Z. Gong, X. Luo, J. Lei, eds.), Lecture Notes in Computer Science, vol 6318, Springer, Berlin, Heidelberg (2010): 378–385. https://doi.org/10.1007/978-3-642-16515-3_47
Wu, G., Zhang, Y., Wei, Y.: Accelerating the Arnoldi-type algorithm for the PageRank problem and the ProteinRank problem, J. Sci. Comput., 57(1) (2013): 74–104
Wu, G., Wei, Y.: An Arnoldi-extrapolation algorithm for computing PageRank, J. Comput. Appl. Math., 234(11) (2010): 3196–3212
Gu, C., Wang, W.: An Arnoldi-Inout algorithm for computing PageRank problems, J. Comput. Appl. Math., 309 (2017): 219–229
Yin, J.-F., Yin, G.-J., Ng, M.: On adaptively accelerated Arnoldi method for computing PageRank, Numer. Linear Algebra Appl., 19(1) (2012): 73–85
Freund, R.W., Hochbruck, M.: On the use of two QMR algorithms for solving singular systems and applications in Markov chain modeling, Numer. Linear Algebra Appl., 1(4) (1994): 403–420
Teramoto, K., Nodera, T.: A note on Lanczos algorithm for computing PageRank, in: Forging Connections between Computational Mathematics and Computational Geometry (K. Chen, A. Ravindran, eds.), Springer Proceedings in Mathematics & Statistics, Vol. 124, Springer, Cham, Switzerland (2016): 25–33. https://doi.org/10.5176/2251-1911_CMCGS14.15_3
Wu, G., Wang, Y.-C., Jin, X.-Q.: A preconditioned and shifted GMRES algorithm for the PageRank problem with multiple damping factors, SIAM J. Sci. Comput., 34(5) (2012): A2558–A2575
Wu, G., Wei, Y.: Arnoldi versus GMRES for computing pageRank: A theoretical contribution to google’s pageRank problem, ACM Trans Inf. Syst., 28(3) (2010): 11. https://doi.org/10.1145/1777432.1777434https://doi.org/10.1145/1777432.1777434
Hessenberg, K.: Behandlung Linearer Eigenwertaufgaben Mit Hilfe Der Hamilton-Cayleyschen Gleichung, Numerische Verfahren, Bericht 1, Institut Für Praktische Mathematik (IPM), Technische Hochschule Darmstadt. The scanned report and a biographical sketch of Karl Hessenberg’s life are available at. http://www.hessenberg.de/karl1.html (1940)
Wilkinson, J.H.: The algebraic eigenvalue problem, Clarendon Press, Oxford, UK (1965)
Sadok, H.: CMRH: a new method for solving nonsymmetric linear systems based on the Hessenberg reduction algorithm. Numer. Algorithms 20 (4), 303–321 (1999)
Stephens, D.: ELMRES: An oblique projection method to solve sparse non-symmetric linear systems (Ph.D Dissertation), Florida Institute of Technology, Melbourne USA. http://ncsu.edu/hpc/Documents/Publications/gary_howell/stephens.pdf (1999)
Householder, A.S., Bauer, F.L.: On certain methods for expanding the characteristic polynomial, Numer. Math., 1(1) (1959): 29–37
Sadok, H., Szyld, D.B.: A new look at CMRH and its relation to GMRES, BIT, 52(2) (2012): 485–501
Heyouni, M., Sadok, H.: A new implementation of the CMRH method for solving dense linear systems, J. Comput. Appl. Math., 213(2) (2008): 387–399
Zhang, K., Gu, C.: Flexible global generalized Hessenberg methods for linear systems with multiple right-hand sides, J. Comput. Appl. Math., 263 (2014): 312–325
Heyouni, M.: The global Hessenberg and CMRH methods for linear systems with multiple right-hand sides, Numer. Algorithms, 26(4) (2001): 317–332
Heyouni, M., Essai, A.: Matrix Krylov subspace methods for linear systems with multiple right-hand sides, Numer. Algorithms, 40(2) (2005): 137–156
Amini, S., Toutounian, F., Gachpazan, M.: The block CMRH method for solving nonsymmetric linear systems with multiple right-hand sides, J. Comput. Appl. Math., 337 (2018): 166–174
Amini, S., Toutounian, F.: Weighted and flexible versions of block CMRH method for solving nonsymmetric linear systems with multiple right-hand sides. Comput. Math. Appl. 76(8), 2011–2021 (2018)
Gu, X.-M., Huang, T.-Z., Yin, G., Carpentieri, B., Wen, C., Du, L.: Restarted Hessenberg method for solving shifted nonsymmetric linear systems, J. Comput. Appl. Math., 331 (2018): 166–177
Gu, X.-M., Huang, T.-Z., Carpentieri, B., Imakura, A., Zhang, K., Du, L.: Efficient variants of the CMRH method for solving a sequence of multi-shifted non-Hermitian linear systems simultaneously, J. Comput. Appl. Math., 375 (2020): 112788. https://doi.org/10.1016/j.cam.2020.112788
Ramezani, Z., Toutounian, F.: Extended and rational Hessenberg methods for the evaluation of matrix functions, BIT, 59(2) (2019): 523–545
Addam, M., Heyouni, M., Sadok, H.: The block Hessenberg process for matrix equations, Electron. Trans. Numer. Anal., 46 (2017): 460–473
Heyouni, M., Saberi-Movahed, F., Tajaddini, A.: On global Hessenberg based methods for solving Sylvester matrix equations, Comput. Math. Appl., 77(1) (2019): 77–92
Businger, P.A.: Reducing a matrix to Hessenberg form, Math. Comp., 23(108) (1969): 819–821
Heyouni, M.: Newton Generalized Hessenberg method for solving nonlinear systems of equations, Numer. Algorithms, 21(1-4) (1999): 225–246
Astudillo, R., van Gijzen, M.B.: A restarted induced dimension reduction method to approximate eigenpairs of large unsymmetric matrices, J. Comput. Appl. Math., 296 (2016): 24–35
Gutknecht, M.H., Zemke, J.-P.M.: Eigenvalue computations based on IDR, SIAM J. Matrix Anal. Appl., 34(2) (2013): 283–311
Acknowledgements
The authors would like to thank Prof. Zhongxiao Jia for his comments about the strategy used in the refined Arnoldi algorithm. Meanwhile, the authors are grateful to Dr. Reinaldo Astudillo (ASML Holding N.V.) for his kind suggestions about executing the IDR-based Hessenberg decompositions used in Section 2.2.
Funding
This research is supported by NSFC (11601323 and 11801463), the Applied Basic Research Program of Sichuan Province (2020YJ0007), and the research grants MYRG2018-00025-FST, MYRG2020-00208-FST from University of Macau. The last author is member of the Gruppo Nazionale per il Calcolo Scientifico (GNCS) of the Istituto Nazionale di Alta Matematica (INdAM) and his work was partially supported by INdAM-GNCS under Progetti di Ricerca 2020.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Gu, XM., Lei, SL., Zhang, K. et al. A Hessenberg-type algorithm for computing PageRank Problems. Numer Algor 89, 1845–1863 (2022). https://doi.org/10.1007/s11075-021-01175-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-021-01175-w