Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Error analysis for the pseudostress formulation of unsteady Stokes problem

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we are concerned with error analysis of the semi-discrete and fully discrete approximations to the pseudostress-velocity formulation of the unsteady Stokes problem. The pseudostress-velocity formulation of the Stokes problem allows a Raviart-Thomas mixed finite element. For the semi-discrete approximation, we prove that solution operators of homogeneous Stokes equations have the so-called parabolic smoothing property. For the fully discrete case, backward Euler and Crank-Nicolson schemes in time are considered. We present how to find the initial value of the pseudostress variable which is not given as initial data in Crank-Nicolson algorithm. Matrix equations are derived to show that backward Euler and Crank-Nicolson schemes corresponding to the pseudostress-velocity formulation are unconditionally stable. Finally, numerical examples are presented to test the performance of the algorithm and validity of the theory developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Arnold, D. N., Falk, R. S.: A new mixed formulation for elasticity. Numer. Math. 53(1-2), 13–30 (1988)

    Article  MathSciNet  Google Scholar 

  2. Bramble, J. H., Thomee, V.: Discrete time Galerkin methods for a parabolic boundary value problem. Ann. Mat. Pura Appl. 101, 115–152 (1974)

    Article  MathSciNet  Google Scholar 

  3. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer, New York (1991)

    Book  Google Scholar 

  4. Cai, Z., Lee, B., Wang, P.: Least-squares methods for incompressible Newtonian fluid flow: linear stationary problems. SIAM J. Numer. Anal. 42, 843–859 (2004)

    Article  MathSciNet  Google Scholar 

  5. Cai, Z., Tong, C., Vassilevski, P. S., Wang, C.: Mixed finite element methods for incompressible flow: stationary Stokes equations. Numer. Methods Part. Diff. Eqs. 26(4), 957–978 (2010)

    Article  MathSciNet  Google Scholar 

  6. Cai, Z., Wang, Y.: A multigrid method for the pseudostress formulation of Stokes problems. SIAM J. Sci. Comput. 29(5), 2078–2095 (2007)

    Article  MathSciNet  Google Scholar 

  7. Cai, Z., Wang, Y.: Pseudostress-velocity formulation for incompressible Navier-Stokes equations. Int. J. Numer. Mech. Fluids 63(3), 341–356 (2010)

    Article  MathSciNet  Google Scholar 

  8. Cai, Z., Wang, C., Zhang, S.: Mixed finite element methods for incompressible flow: stationary Navier-Stokes equations. S.AM J. Numer. Anal. 48(1), 79–94 (2010)

    Article  MathSciNet  Google Scholar 

  9. Carstensen, C., Gallistl, D., Schedensack, M.: Quasi-optimal adaptive pseudostress approximation of the Stokes equations. SIAM J. Numer. Anal. 51(3), 1715–1734 (2013)

    Article  MathSciNet  Google Scholar 

  10. Carstensen, C., Kim, D., Park, E. -J., priori, A: a posteriori pseudostress-velocity mixed finite element error analysis for the Stokes problem. SIAM J. Numer Anal. 49(6), 2501–2523 (2011)

    Article  MathSciNet  Google Scholar 

  11. Caucao, S., Yotov, I.: A Banach space mixed formulation for the unsteady Brinkman–Forchheimer equations, IMA J. Numer. Anal. 41(4), 2708–2743 (2021)

  12. Cáceres, E., Gatica, G. N.: A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem. IMA J. Numer. Anal. 37(1), 296–331 (2017)

    Article  MathSciNet  Google Scholar 

  13. Cáceres, E., Gatica, G. N., Sequeira, F. A.: A mixed virtual element method for a pseudostress-based formulation of linear elasticity. Appl. Numer. Math. 135, 423–442 (2019)

    Article  MathSciNet  Google Scholar 

  14. Ern, A., Guermond, J. L.: Theory and practice of finite elements applied mathematical sciences, vol. 159. Springer, New York (2004)

    Book  Google Scholar 

  15. Gatica, G. N., Márquez, A., Sánchez, M. A.: Analysis of a velocity-pressure-pseudostress formulation for the stationary Stokes equation. Comput. Methods Appl. Mech. Eng. 199(17–20), 1064–1079 (2010)

    Article  MathSciNet  Google Scholar 

  16. Girault, V., Raviart, P. A.: Finite element methods for Navier-Stokes equations. Springer, New York (1986)

    Book  Google Scholar 

  17. Johnson, C.: Numerical solution of partial differential equations by the finite element method. Cambridge Univercity Press (1987)

  18. Johnson, C., Thomée, V.: Error estimates for some mixed finite element methods for parabolic type problems. R.A.I.R.O. Anal. Numér. 15, 41–78 (1981)

    Article  MathSciNet  Google Scholar 

  19. Kim, D., Park, E. -J., Seo, B.: Optimal error estimates for the pseudostress formulation of the Navier-Stokes equations. Appl. Math. Lett. 78, 24–30 (2018)

    Article  MathSciNet  Google Scholar 

  20. Kim, D., Park, E. -J.: Adaptive Crank-Nicolson methods with dynamic finite-element spaces for parabolic problems. Discret. Contin. Dyn. Syst. Ser. B 10(4), 873–886 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Kim, D., Park, E. -J., Seo, B.: Two-scale product approximation for semilinear parabolic problems in mixed methods. J. Korean Math. Soc. 51(2), 267–288 (2014)

    Article  MathSciNet  Google Scholar 

  22. Kim, D., Park, E. -J., Seo, B.: Space-time adaptive methods for the mixed formulation of a linear parabolic problem. J. Sci. Comput. 74(3), 1725–1756 (2018)

    Article  MathSciNet  Google Scholar 

  23. Dohyun Kim, L., Zhao, E. -J.: Park, staggered DG methods for the pseudostress-velocity formulation of the Stokes equations on general meshes. SIAM J. Sci. Comput. 42(4), A2537–A2560 (2020)

    Article  Google Scholar 

  24. Kim, M. -Y., Milner, F. A., Park, E. -J.: Some observations on mixed methods for fully nonlinear parabolic problems in divergence form. Appl. Math. Lett. 9, 75–81 (1996)

    Article  MathSciNet  Google Scholar 

  25. Kim, M. -Y., Park, E. -J., Park, J.: Mixed finite element domain decomposition for nonlinear parabolic problems. Comput. Math. Appl 40(9), 1061–1070 (2000)

    Article  MathSciNet  Google Scholar 

  26. Park, E. -J.: Mixed finite element methods for generalized Forchheimer flow in porous media. Numer. Methods Partial Differ. Equ. 21(2), 213–228 (2005)

    Article  MathSciNet  Google Scholar 

  27. Raviart, P. A., Thomas, J.: A mixed finite element method for 2-nd order elliptic problems, Mathematical aspects of the Finite Elements Method, Lectures Notes in Math. vol. 606, pp. 292–315. Springer, Berlin (1977)

  28. Temam, R.: Navier-Stokes equations, North Holland. Amsterdam (1977)

  29. Thomée, V.: Galerkin element methods for parabolic problems. Springer (1997)

  30. Wang, C.: Mixed finite element methods for the Stokes and Navier-Stokes equations. Thesis (Ph.D.)–Purdue University, pp. 1–112 (2007)

  31. Zhao, L., Park, E. -J., Shin, D.-W.: A staggered DG method of minimal dimension for the Stokes equations on general meshes. Comput. Methods Appl. Mech. Eng. 345, 854–875 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Funding

Dongho Kim was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2018R1D1A1B07050583 and NRF-2021R1F1A1062434). Eun-Jae Park was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2015R1A5A1009350). Boyoon Seo was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2020R1I1A1A01070361).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eun-Jae Park.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D., Park, EJ. & Seo, B. Error analysis for the pseudostress formulation of unsteady Stokes problem. Numer Algor 91, 959–996 (2022). https://doi.org/10.1007/s11075-022-01288-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-022-01288-w

Keywords

Mathematics Subject Classification (2010)