Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A two-dimensional randomized extended Gauss-Seidel algorithm for solving least squares problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We study a two-dimensional coordinate descent method to solve large linear least squares problems expanding on the method presented by Leventhal and Lewis. For an overdetermined system with full column rank, they proved its convergence in expectation, regardless of its consistency. In our work, we present a block version of the same. We also present an update on the extension done by Ma et al. to address non-full rank linear systems or underdetermined linear systems. Convergence is analyzed for the stated methods, and numerical experiments are provided to demonstrate their efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

No requirement of permission.

References

  1. Bai, Z.-Z., Wu, W.-T.: On greedy randomized coordinate descent methods for solving large linear least-squares problems. Numer. Linear. Algebr. 26, e2237 (2019)

    Article  MathSciNet  Google Scholar 

  2. Chen, J.-Q., Huang, Z.-D.: On the error estimate of the randomized double block Kaczmarz method. Appl. Math. Comput. 370, 124907 (2020)

    MathSciNet  Google Scholar 

  3. Du, K.: Tight upper bounds for the convergence of the randomized extended Kaczmarz and Gauss-Seidel algorithms. Numer. Linear. Algebr. 26, 1–14 (2019)

    Article  MathSciNet  Google Scholar 

  4. Elfving, T.: Block-iterative methods for consistent and inconsistent linear equations. Numer. Math. 35, 1–12 (1980)

    Article  MathSciNet  Google Scholar 

  5. Horn, R.A., Johnson, C.R.: Topics in matrix analysis. Cambridge University Press (2008)

  6. Huang, X., Liu, G., Niu, Q.: Remarks on Kaczmarz algorithm for solving consistent and inconsistent system of linear equations. Lect. Notes. Comput. Sc. 12138, 225–236 (2020)

    Article  MathSciNet  Google Scholar 

  7. Kaczmarz, S.: Angenäherte Auösung von Systemen linearer Gleichungen. Bull. Int. Acad. Pol. Sci. A 35, 355–357 (1937)

    Google Scholar 

  8. Kaczmarz, S.: Approximate solution of systems of linear equations. Int. J. Control. 57, 1269–1271 (1993)

    Article  MathSciNet  Google Scholar 

  9. Leventhal, D., Lewis, A.S.: Randomized methods for linear constraints: convergence rates and conditioning. Math. Oper. Res. 35, 641–654 (2010)

    Article  MathSciNet  Google Scholar 

  10. Liu, Y., Jiang, X.-L., Gu, C.-Q.: On maximum residual block and two-step Gauss-Seidel algorithms for linear least-squares problems. Calcolo. 58, 13 (2021)

    Article  MathSciNet  Google Scholar 

  11. Ma, A., Needell, D., Ramdas, A.: Convergence properties of the randomized extended Gauss-Seidel and Kaczmarz methods. SIAM J. Matrix Anal. Appl. 36, 1590–1604 (2015)

    Article  MathSciNet  Google Scholar 

  12. Mustafa, A., Saha, M.: A generalized projection iterative method for solving non-singular linear systems. Math. Found. Comput. 5, 343–350 (2022)

    Article  Google Scholar 

  13. Needell, D.: Randomized Kaczmarz solver for noisy linear systems. BIT. 50, 395–403 (2010)

    Article  MathSciNet  Google Scholar 

  14. Needell, D., Tropp, J.A.: Paved with good intentions: analysis of a randomized block Kaczmarz method. Linear. Algebra. Appl. 441, 199–221 (2014)

    Article  MathSciNet  Google Scholar 

  15. Needell, D., Ward, R.: Two-subspace projection method for coherent overdetermined systems. J. Fourier. Anal. Appl. 19, 256–269 (2013)

    Article  MathSciNet  Google Scholar 

  16. Needell, D., Zhao, R., Zouzias, A.: Randomized block Kaczmarz method with projection for solving least squares. Linear. Algebra. Appl. 484, 322–343 (2015)

    Article  MathSciNet  Google Scholar 

  17. Niu, Y.-Q., Zheng, B.: A new randomized Gauss-Seidel method for solving linear least-squares problems. Appl. Math. Lett. 116, 107057 (2021)

    Article  MathSciNet  Google Scholar 

  18. Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares. ACM. T. Math. Software. 8, 43–71 (1982)

    Article  MathSciNet  Google Scholar 

  19. Saad, Y.: Iterative methods for sparse linear systems, 2nd edn. SIAM, Philadelphia (2003)

    Book  Google Scholar 

  20. Strohmer, T., Vershynin, R.: A randomized Kaczmarz algorithm with exponential convergence. J. Fourier. Anal. Appl. 15, 262–278 (2009)

    Article  MathSciNet  Google Scholar 

  21. Wu, W.: Paving the randomized Gauss-Seidel method. BSc Thesis. Scripps College, Claremont, California (2017)

  22. Zouzias, A., Freris, N.M.: Randomized extended Kaczmarz for solving least squares. Siam. J. Matrix. Anal. Appl. 34, 773–793 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.M. and M.S. conceived of the presented idea. A.M. developed the theory and performed the computations. M.S. supervised the findings of this work. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Manideepa Saha.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A   Convergence of R(E)BGS algorithm

Appendix A   Convergence of R(E)BGS algorithm

Suppose, the REBGS method is implemented as per the notations used in Sect. 1.3. To obtain a \(\left( \tilde{p}, \tilde{\alpha }, \tilde{\beta } \right) \) column paving of A, we randomly choose columns of A in such a way that \(\tilde{p}\) number of selections will exhaust all the columns. A naive way may be to randomly choose \(\dfrac{n}{\tilde{p}}\) columns for \(\tilde{p}\) times without replacement, for some divisor \(\tilde{p}\) of n. The row pavings can simply be seen as a column partition executed on \(A^{T}\). The convergence results depend on the positive numbers \(\gamma =\left( 1-\dfrac{\sigma _{min}^2A}{p\beta }\right) \), \(\overline{\gamma } =\left( 1-\dfrac{\sigma _{min}^2A}{\tilde{p}\tilde{\beta }}\right) \). For a matrix \(A\in \mathbb {R}^{m,n} \), with a \(\left( p, \alpha , \beta \right) \) row paving \( \rho \) and for any \(z\in R(A^T)\), \(\rho _i\in \rho \), we have [2, 14],

$$\begin{aligned} E\Vert \left( I-A_{\rho _i}^{\dagger }A_{\rho _i}\right) z\Vert ^2\le \gamma \Vert z\Vert ^2. \end{aligned}$$
(A1)

Let \(x_k\) be the \(k^{th}\) iterate of the REBGS algorithm with arbitrary \(x_0\). Then, in exact arithmetic,

$$\begin{aligned} E\Vert Ax_k-AA^{\dagger }b\Vert ^2\le \overline{\gamma }^k \Vert Ax_0-AA^{\dagger }b\Vert ^2. \end{aligned}$$
(A2)

We have

$$\begin{aligned} Ax_k-AA^{\dagger }b&=Ax_{k-1}-AA^{\dagger }b-A_{\tau _j}A_{\tau _j}^{\dagger }\left( Ax_{k-1}-b\right) \\&=\left( I-A_{\tau _j}A_{\tau _j}^{\dagger }\right) \left( Ax_{k-1}-AA^{\dagger }b\right) , \end{aligned}$$

where the second equality follows from the fact that \(A_{\tau _j}A_{\tau _j}^{\dagger }b=A_{\tau _j}A_{\tau _j}^{\dagger }AA^{\dagger }b\).

Since, \(A_{\tau _j}A_{\tau _j}^{\dagger }=\left( A_{\tau _j}^T\right) ^{\dagger }A_{\tau _j}^T\) and \(Ax_{k-1}-AA^{\dagger }b\in R(A)\), we use (A1) to get

$$E_{k-1}\Vert Ax_k-AA^{\dagger }b\Vert ^2\le \overline{\gamma } \Vert Ax_{k-1}-AA^{\dagger }b\Vert ^2.$$

Using law of total expectation and then rolling out the recurrences, we obtain (A2), which in fact shows the convergence of the RBGS algorithm for full column rank systems.

The next result shows the convergence of the REBGS method which says that for \(A\in \mathbb {R}^{m,n} \) and \(b\in \mathbb {R}^{m}\), if \(z_k\) denotes the \(k^{th}\) iterate of the REBGS algorithm with arbitrary \(x_0\) and \(z_0 \in R(A^T)\), then, in exact arithmetic,

$$\begin{aligned} E\Vert z_k-A^{\dagger }b\Vert ^2\le \gamma ^k \Vert z_{0}-A^{\dagger }b\Vert ^2+r\left( \gamma ,\overline{\gamma }\right) \dfrac{\Vert Ax_0-AA^{\dagger }b\Vert ^2}{\alpha p} , \end{aligned}$$
(A3)

where for any \(k\ge 1\),

$$r\left( \gamma ,\overline{\gamma }\right) = {\left\{ \begin{array}{ll} \overline{\gamma }\dfrac{\overline{\gamma }^k-\gamma ^k}{\overline{\gamma }-\gamma }, &{} \text { if } \overline{\gamma }\ne \gamma ,\\ k\gamma ^k, &{} \text { if }\overline{\gamma }= \gamma . \end{array}\right. } $$

We have

$$\begin{aligned} z_k-A^{\dagger }b&=z_{k-1}+A_{\rho _i}^{\dagger }\left( (Ax_k)_{\rho _i}-A_{\rho _i}z_{k-1}\right) -A^{\dagger }b\\&=\left( I-A_{\rho _i}^{\dagger }A_{\rho _i}\right) z_{k-1} +A_{\rho _i}^{\dagger }A_{\rho _i}x_k-A^{\dagger }b\\&=\left( I-A_{\rho _i}^{\dagger }A_{\rho _i}\right) \left( z_{k-1}-A^{\dagger }b\right) +A_{\rho _i}^{\dagger }A_{\rho _i}\left( x_k-A^{\dagger }b\right) . \end{aligned}$$

It follows from the orthogonality of the range spaces of \(I-A_{\rho _i}^{\dagger }A_{\rho _i}\) and \(A_{\rho _i}^{\dagger }A_{\rho _i}\), that

$$\begin{aligned} \Vert z_k-A^{\dagger }b\Vert ^2=\Vert \left( I-A_{\rho _i}^{\dagger }A_{\rho _i}\right) \left( z_{k-1}-A^{\dagger }b\right) \Vert ^2+\Vert A_{\rho _i}^{\dagger }A_{\rho _i}\left( x_k-A^{\dagger }b\right) \Vert ^2. \end{aligned}$$
(A4)

As \(z_0\), \(A^{\dagger }b\) \(\in R(A^T)\), it can be induced that \(z_{k-1}-A^{\dagger }b\in R(A^T)\), and so by relation (A1), we have

$$E_k\Vert \left( I-A_{\rho _i}^{\dagger }A_{\rho _i}\right) \left( z_{k-1}-A^{\dagger }b\right) \Vert ^2\le \gamma \Vert z_{k-1}-A^{\dagger }b\Vert ^2.$$

By law of total expectation,

$$\begin{aligned} E\Vert \left( I-A_{\rho _i}^{\dagger }A_{\rho _i}\right) \left( z_{k-1}-A^{\dagger }b\right) \Vert ^2\le \gamma E\Vert z_{k-1}-A^{\dagger }b\Vert ^2. \end{aligned}$$
(A5)

Again,

$$\begin{aligned} \Vert A_{\rho _i}^{\dagger }A_{\rho _i}\left( x_k-A^{\dagger }b\right) \Vert ^2&\le \sigma _{max}^2\left( A_{\rho _i}^{\dagger } \right) \Vert \left( Ax_k-AA^{\dagger }b\right) _{\rho _i}\Vert ^2\\&=\dfrac{ \Vert \left( Ax_k-AA^{\dagger }b\right) _{\rho _i}\Vert ^2}{\sigma _{min}^2\left( A_{\rho _i}^{\dagger } \right) }\\&\le \dfrac{\Vert \left( Ax_k-AA^{\dagger }b\right) _{\rho _i}\Vert ^2}{\alpha }, \end{aligned}$$

where the first inequality and the second equality result from properties of singular values and the third inequality follows from the paving relations. Therefore,

$$E_k\Vert A_{\rho _i}^{\dagger }A_{\rho _i}\left( x_k-A^{\dagger }b\right) \Vert ^2\le \dfrac{1}{\alpha p}\Vert Ax_k-AA^{\dagger }b\Vert ^2.$$

Taking expectation on both sides and using (A2), we get

$$\begin{aligned} E\Vert A_{\rho _i}^{\dagger }A_{\rho _i}\left( x_k-A^{\dagger }b\right) \Vert ^2\le \dfrac{\overline{\gamma }^k}{\alpha p} \Vert Ax_0-AA^{\dagger }b\Vert ^2. \end{aligned}$$
(A6)

It follows from (A4), (A5), and (A6) that

$$\begin{aligned} E\Vert z_k-A^{\dagger }b\Vert ^2&\le \gamma E\Vert z_{k-1}-A^{\dagger }b\Vert ^2+\dfrac{\overline{\gamma }^k}{\alpha p} \Vert Ax_0-AA^{\dagger }b\Vert ^2\\&\le \gamma ^2 E\Vert z_{k-2}-A^{\dagger }b\Vert ^2+\dfrac{\gamma \overline{\gamma }^{k-1}+\overline{\gamma }^{k}}{\alpha p} \Vert Ax_0-AA^{\dagger }b\Vert ^2\\&~~~~~~~~~\vdots ~~~~~~~~~\vdots ~~~~~~~~~\vdots \\&\le \gamma ^k E\Vert z_{0}-A^{\dagger }b\Vert ^2+\dfrac{1}{\alpha p}\sum _{i=0}^{k-1}\overline{\gamma }^{k-i}\gamma ^i\Vert Ax_0-AA^{\dagger }b\Vert ^2\\&=\gamma ^k \Vert z_{0}-A^{\dagger }b\Vert ^2+r\left( \gamma ,\overline{\gamma }\right) \dfrac{\Vert Ax_0-AA^{\dagger }b\Vert ^2}{\alpha p} . \end{aligned}$$

Hence, the (A3) holds.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustafa, A., Saha, M. A two-dimensional randomized extended Gauss-Seidel algorithm for solving least squares problems. Numer Algor 96, 665–686 (2024). https://doi.org/10.1007/s11075-023-01661-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01661-3

Keywords

Mathematics Subject Classification (2010)