Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Analysis for the space-time a posteriori error estimates for mixed finite element solutions of parabolic optimal control problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper investigates the space-time residual-based a posteriori error bounds of the mixed finite element method for the optimal control problem governed by the parabolic equation in a bounded convex domain. For the spatial discretization of the state and co-state variables, the lowest-order Raviart-Thomas spaces are utilized, although for the control variable, variational discretization technique is used. The backward-Euler implicit method is applied for temporal discretization. To provide a posteriori error estimates for the state and control variables in the \(L^{\infty }(L^2)\)-norm, an elliptic reconstruction approach paired with an energy strategy is utilized. The reliability and efficiency of the a posteriori error estimators are discussed. The effectiveness of the estimators is finally confirmed through the numerical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The authors do not analyze or generate any datasets, because our work proceeds within a theoretical and mathematical approach. One can obtain the relevant materials from the references below.

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev spaces, pure and applied mathematics. Elsevier, Amsterdam (2003)

  2. Alt, W., Mackenroth, U.: Convergence of finite element approximations to state constrained convex parabolic boundary control problems. SIAM J. Control Optim. 27, 718–736 (1987)

    MathSciNet  Google Scholar 

  3. Araya, R., Venegas, P.: An a posteriori error estimator for an unsteady advection diffusion reaction problem. Comput. Math. Appl. 66, 2456–2476 (2014)

    MathSciNet  Google Scholar 

  4. Babuška, I., Ohnimus, S.: A posteriori error estimation for the semidiscrete finite element method of parabolic partial differential equations. Comput. Meth. Appl. Mech. Engrg. 190, 4691–4712 (2001)

    Google Scholar 

  5. Bieterman, M., Babuška, I.: The finite element method for parabolic equations, 1: a posteriori error estimation. Numer. Math. 40, 339–371 (1982)

    MathSciNet  Google Scholar 

  6. Bieterman, M., Babuška, I.: The finite element method for parabolic equations, 2: a posteriori error estimation and adaptive approach. Numer. Math. 40, 373–406 (1982)

    MathSciNet  Google Scholar 

  7. Brenner, S.C., Scott, L.R.: The mathematical theory of finite element methods. Springer, New York (2008)

    Google Scholar 

  8. Boffi, D., Brezzi, F., Demkowicz, L.F., Durán, R.G., Falk, R.S., Fortin, M.: Mixed finite elements, compatibility conditions and applications. Springer, Italy (2006)

    Google Scholar 

  9. Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. Springer-Verlag, Berlin (1991)

    Google Scholar 

  10. Chen, Y.: Superconvergence of mixed finite elements methods for optimal control problems. Math. Comp. 77, 1269–1291 (2008)

    MathSciNet  Google Scholar 

  11. Chen, Y., Huang, Y., Liu, W.B., Yan, N.: Error estimates and superconvergence of mixed finite element methods for convex optimal control problems. J. Sci. Comput. 42, 382–403 (2009)

    MathSciNet  Google Scholar 

  12. Chen, Y., Liu, W.: A posteriori error estimates for mixed finite element solutions of convex optimal control problems. J. Comp. Appl. Math. 211, 76–89 (2008)

    MathSciNet  Google Scholar 

  13. Chen, Y., Liu, L., Lu, Z.: A posteriori error estimates of mixed methods for parabolic optimal control problems. Numer. Funct. Anal. Optim. 31, 1135–1157 (2010)

    MathSciNet  Google Scholar 

  14. Chen, Y., Lu, Z.: High efficient and accuracy numerical methods for optimal control problems. Science Press, Beijing (2015)

    Google Scholar 

  15. Clément, P.: Approximation by finite element function using local regularization. RAIRO Sér. Rouge Anal. Numér. 2, 77–84 (1975)

    MathSciNet  Google Scholar 

  16. Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems 1: a linear model problem. SIAM J. Numer. Anal. 28, 43–77 (1991)

    MathSciNet  Google Scholar 

  17. Falk, F.S.: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44, 28–47 (1973)

    MathSciNet  Google Scholar 

  18. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–265 (2012)

    MathSciNet  Google Scholar 

  19. Hinze, M.: A variational discretization concept in control constrained optimization: the linear quadratic case. Comput. Optim. Appl. 30, 45–63 (2005)

    MathSciNet  Google Scholar 

  20. Hou, T., Chen, Y.: Mixed discontinuous Galerkin time-stepping method for linear parabolic problems. J. Comput. Math. 33, 158–178 (2015)

    MathSciNet  Google Scholar 

  21. Johnson, C., Nie, Y.Y., Thomée, V.: An a posteriori error estimate and adaptive time step control for a backward Euler discretization of a parabolic problem. SIAM J. Numer. Anal. 27, 277–291 (1990)

    MathSciNet  Google Scholar 

  22. Johnson, C., Thomée, V.: Error estimates for some mixed finite elements methods for parabolic type problems. RAIRO Analyse Numerique. 15, 41–78 (1981)

    MathSciNet  Google Scholar 

  23. Lakkis, O., Makridakis, C.: Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems. Math. Comp. 75, 1627–1658 (2006)

    MathSciNet  Google Scholar 

  24. Lasiecka, I.: Ritz-Galerkin approximation of the time optimal boundary control problem for parabolic systems with Dirichlet boundary conditions. SIAM J. Control Optim. 22, 477–500 (1984)

    MathSciNet  Google Scholar 

  25. Lasiecka, I., Malanowski, K.: On discrete-time Ritz-Galerkin approximation of control constrained optimal control problems for parabolic systems. Control Cybernet. 7, 21–36 (1978)

    MathSciNet  Google Scholar 

  26. Li, L.: Mixed discontinuous Galerkin time-stepping method for semilinear parabolic optimal control problems. Comput. Math. Model. 27, 95 (2016)

    MathSciNet  Google Scholar 

  27. Lions, J.L.: Optimal control of systems governed by parabolic differential equations. Springer-Verlag, Berlin (1971)

    Google Scholar 

  28. Liu, W., Yan, N.: A posteriori error estimates for optimal control problems governed by parabolic equations. Numer. Math. 93, 497–521 (2003)

    MathSciNet  Google Scholar 

  29. Lu, Z.: New a posteriori \(L^\infty (L^2)\) and \(L^2(L^2)\)-error estimates of mixed finite element methods for general nonlinear parabolic optimal control problems. Appl. Math. 61, 135–163 (2016)

    MathSciNet  Google Scholar 

  30. Makridakis, C., Nochetto, R.H.: Elliptic reconstruction and a posteriori error estimates for parabolic problems. SIAM J. Numer. Anal. 41, 1585–1594 (2003)

    MathSciNet  Google Scholar 

  31. Manohar, R., Sinha, R.K.: A posteriori error estimates for parabolic optimal control problems with controls acting on lower dimensional manifolds. J. Sci. Comput. 89, 39 (2021)

    MathSciNet  Google Scholar 

  32. McKnight, R.S., Bosarge, W.E., Jr.: The Ritz-Galerkin procedure for parabolic control problems. SIAM J. Control Optim. 11, 510–524 (1973)

    MathSciNet  Google Scholar 

  33. Meidner, D., Vexler, B.: A priori error estimates for space-time finite element discretization of parabolic optimal control problems Part II: problems with control constraints. SIAM J. Control Optim. 47, 1301–1329 (2008)

    MathSciNet  Google Scholar 

  34. Menon, S., Nataraj, N., Pani, A.K.: An a posteriori error analysis of a mixed finite element Galerkin approximation to second order linear parabolic problems. SIAM J. Numer. Anal. 50, 1367–1393 (2012)

    MathSciNet  Google Scholar 

  35. Neittaanmäki, P.: Tiba, D.: Optimal control of nonlinear parabolic systems: theory, algorithms and applications, Dekker: New York (1994)

  36. Nochetto, R.H., Savare, G., Verdi, C.: A posteriori error estimates for variable time step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math. 53, 525–589 (2000)

    MathSciNet  Google Scholar 

  37. Manohar, R., Sinha, R.K.: A posteriori \(L^{\infty }(L^{\infty })\) error estimates for finite element approximations to parabolic optimal control problems. Comput. Appl. Math. 40, 298 (2021)

    MathSciNet  Google Scholar 

  38. Raviart, P.A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems, vol. 606, pp. 292–315. Springer, Berlin (1977)

    Google Scholar 

  39. Shakya, P., Sinha, R.K.: A priori and a posteriori error estimates of finite element approximations for elliptic optimal control problem with measure data. Optim. Control Appl. Meth. 40, 241–264 (2019)

    Google Scholar 

  40. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary condiition. Math. Comp. 54, 483–493 (1990)

    MathSciNet  Google Scholar 

  41. Tang, Y., Hua, Y.: Elliptic reconstruction and a posteriori error estimates for parabolic optimal control problems. J. Appl. Anal. Comp. 4, 295–306 (2014)

    MathSciNet  Google Scholar 

  42. Thomée, V.: Galerkin finite element methods for parabolic problems, 2nd edn, Verlag (2006)

  43. Verfürth, R.: A posteriori error estimates and adaptive mesh refinement techniques. J Comput. Appl. Math. 50, 67–83 (1994)

    MathSciNet  Google Scholar 

  44. Tröltzsch, F.: Optimal control of partial differential equations, Theory. Methods and Applications. AMS, Providence, RI (2010)

    Google Scholar 

  45. Verfürth, R.: A posteriori error estimates for nonlinear problems: \(L^r(0, T;W^{1, \rho }({\Omega }))\)-error estimates for finite element discretization of parabolic equations. Numer. Methods Partial Differ. Equ. 14, 487–518 (1998)

    Google Scholar 

  46. Verfürth, R.: A posteriori error estimates for nonlinear problems: \(L^{\rho }({\Omega })\)-error estimates for finite element discretization of parabolic equations. Math. Comp. 67, 1335–1360 (1998)

    MathSciNet  Google Scholar 

  47. Wheeler, M.F.: A priori \(L^{2}\)-error estimates for Galerkin approximations to parabolic differential equations. SIAM J. Numer. Anal. 10, 723–749 (1973)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author would like to thank the Department of Science and Technology (DST) for providing financial assistance under the scheme National Post-Doctoral Fellowship (PDF/2021/000444), New Delhi, India. Finally, the authors acknowledge the valuable comments and constructive suggestions made by the referees that led to the improvement of the content of the manuscript.

Funding

Under the scheme of National Post-Doctoral Fellowship (PDF/2021/000444) by the Department of Science and Technology (DST), India.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to this work.

Corresponding author

Correspondence to Pratibha Shakya.

Ethics declarations

Ethical approval

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shakya, P., Kumar Sinha, R. Analysis for the space-time a posteriori error estimates for mixed finite element solutions of parabolic optimal control problems. Numer Algor 96, 879–924 (2024). https://doi.org/10.1007/s11075-023-01669-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01669-9

Keywords

Mathematics Subject Classification (2010)