Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Efficient parameter-robust numerical methods for singularly perturbed semilinear parabolic PDEs of convection-diffusion type

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper is concerned with a class of singularly perturbed semilinear parabolic convection-diffusion initial-boundary-value problems exhibiting a boundary layer. This type of model problem often appears in modeling various physical phenomena, particularly, in mathematical biology; and thus, it requires effective numerical techniques for analyzing them computationally. For this purpose, we approximate the considered nonlinear problem by developing two efficient fitted mesh methods followed by the extrapolation technique. The first one is the fully implicit fitted mesh method which utilizes the implicit-Euler method for the temporal discretization; and the other one is the implicit-explicit (IMEX) fitted mesh method which utilizes the IMEX-Euler method for the temporal discretization. The spatial discretization for both the numerical methods is based on a new hybrid finite difference scheme. To accomplish this, the spatial domain is discretized by an appropriate layer-adapted mesh and the time domain by an equidistant mesh. At first, we analyze stability and study the asymptotic behavior of the analytical solution of the governing nonlinear problem. Then, we perform stability analysis and establish the parameter-uniform convergence of both the newly proposed methods in the discrete supremum norm. Thereafter, we analyze the Richardson extrapolation technique solely for the time variable to improve the order of convergence in the temporal direction. Hereby, we provide a comparative error analysis to achieve parameter-robust higher-order numerical approximations (concerning both space and time) for the considered nonlinear problem utilizing two new algorithms on a nonuniform grid. The theoretical outcomes are finally supported by the extensive numerical experiments, which also include comparison of the proposed numerical methods along with the fully-implicit upwind method in terms of the order of accuracy and the computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated and analyzed during the current study are included in this article.

References

  1. Folkman, J.: Tumor angiogenesis. Adv. Cancer Res 43, 175–203 (1985)

    Article  Google Scholar 

  2. Boon, J.P., Herpigny, B.: Model for chemotactic bacterial bands. Bulletin of Mathematical Biology 48(1), 1–19 (1986)

    Article  Google Scholar 

  3. Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and quasi-linear equations of parabolic type, volume 23 of Translations of Mathematical Monographs. American Mathematical Society (1968)

  4. Friedman, A.: Partial differential equations of parabolic type. Courier Dover Publications, 1st edition (2008)

  5. Chang, K.W., Howes, F.A.: Nonlinear singular perturbation phenomena: theory and applications. Springer Science (2012)

  6. Farrell, P.A., Hegarty, A.F., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Robust computational techniques for boundary layers. Chapman & Hall/CRC Press (2000)

  7. Roos, H.G., Stynes, M., Tobiska, L.: Robust numerical methods for singularly perturbed differential equations, 2nd edn. Springer-Verlag, Berlin (2008)

    Google Scholar 

  8. Kadalbajoo, M.K., Gupta, V.: A brief survey on numerical methods for solving singularly perturbed problems. Appl. Math. Comput. 217, 3641–3716 (2010)

    Article  MathSciNet  Google Scholar 

  9. Clavero, C., Gracia, J.L., Lisbona, F.: Higher-order numerical methods for one-dimensional parabolic singularly perturbed problems with regular layers. Numer. Methods Partial Differential Equations 21, 149–169 (2005)

    Article  Google Scholar 

  10. Mukherjee, K., Natesan, S.: Parameter-uniform hybrid numerical scheme for time-dependent convection-dominated initial-boundary-value problems. Computing. 84(3–4), 209–230 (2009)

    Article  MathSciNet  Google Scholar 

  11. Yadav, N.S., Mukherjee, K.: On \(\varepsilon \)-uniform higher order accuracy of new efficient numerical method and its extrapolation for singularly perturbed parabolic problems with boundary layer. Int. J. Appl. Comput. Math. 7(3) (2021). 10.1007/s40819-021-00979-7

  12. Chadha, N.M., Madden, N.: An optimal time-stepping algorithm for unsteady advection-diffusion problems. J. Comput. Appl. Math. 294(17), 57–77 (2016)

    Article  MathSciNet  Google Scholar 

  13. Mukherjee, K., Natesan, S.: \(\varepsilon \)-Uniform error estimate of hybrid numerical scheme for singularly perturbed parabolic problems with interior layers. Numer. Alogrithms. 58(1), 103–141 (2011)

    Article  MathSciNet  Google Scholar 

  14. Yadav, N.S., Mukherjee, K.: Uniformly convergent new hybrid numerical method for singularly perturbed parabolic problems with interior layers. Int. J. Appl. Comput. Math. 6(53) (2020). 10.1007/s40819-020-00804-7

  15. Yadav, N.S., Mukherjee, K.: An efficient numerical method for singularly perturbed parabolic problems with non-smooth data. In Computational Sciences - Modelling, Computing and Soft Computing, Communications in Computer and Information Science, pages 159–171 (2021)

  16. Farrell, P.A., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: On the non-existence of \(\epsilon \)-uniform finite difference methods on uniform meshes for semilinear two-point boundary value problems. Math. Comp. 67(222), 603–617 (1998)

    Article  MathSciNet  Google Scholar 

  17. Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted numerical methods for singular perturbation problems. World Scientific, Singapore (1996)

    Book  Google Scholar 

  18. Farrell, P.A., Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: A uniformly convergent finite difference scheme for a singularly perturbed semilinear equation. SIAM J. Numer. Anal. 33(3), 1135–1149 (1996)

    Article  MathSciNet  Google Scholar 

  19. Gracia, J.L., Lisbona, F.J., Madaune-Tort, M., O’Riordan, E.: A system of singularly perturbed semilinear equations. In BAIL 2008—boundary and interior layers, volume 69 of Lect. Notes Comput. Sci. Eng. pages 163–172. Springer, Berlin (2009)

  20. Kumar, S., Rao, S.C.S.: A robust domain decomposition algorithm for singularly perturbed semilinear systems. Int. J. Comput. Math. 94(6), 1108–1122 (2017)

    Article  MathSciNet  Google Scholar 

  21. Mariappan, M., Tamilselvan, A.: Higher order computational method for a singularly perturbed nonlinear system of differential equations. J. Appl. Math. Comput. 1–13 (2021)

  22. Shishkina, L., Shishkin, G.I.: Conservative numerical method for a system of semilinear singularly perturbed parabolic reaction-diffusion equations. Math. Model. Anal. 14(2), 211–228 (2009)

    Article  MathSciNet  Google Scholar 

  23. Clavero, C., Jorge, J.C.: An efficient and uniformly convergent scheme for one-dimensional parabolic singularly perturbed semilinear systems of reaction-diffusion type. Numer. Algorithms 85, 1005–1027 (2020)

    Article  MathSciNet  Google Scholar 

  24. Rao, S.C.S., Chaturvedi, A.K.: Pointwise error estimates for a system of two singularly perturbed time-dependent semilinear reaction-diffusion equations. Math. Methods Appl. Sci. 44(17), 13287–13325 (2021)

    Article  MathSciNet  Google Scholar 

  25. Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: On piecewise uniform meshes for upwind and central difference operators for solving singularly perturbed problems. IMA J. Numer. Anal. 15, 89–99 (1995)

    Article  MathSciNet  Google Scholar 

  26. Boscarino, S.: Error analysis of IMEX Runge-Kutta methods derived from differential-algebraic systems. SIAM J. Numer. Anal. 45(4), 1600–1621 (2007)

    Article  MathSciNet  Google Scholar 

  27. Boscarino, S., Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes for hyperbolic systems and kinetic equations in the diffusion limit. SIAM J. Sci. Comput. 35(1), A22–A51 (2013)

    Article  MathSciNet  Google Scholar 

  28. Boscarino, S., Bürger, R., Mulet, P., Russo, G., Villada, L.M.: Linearly implicit IMEX Runge-Kutta methods for a class of degenerate convection-diffusion problems. SIAM J. Sci. Comput. 37(2), B305–B331 (2015)

    Article  MathSciNet  Google Scholar 

  29. Boscarino, S., Filbet, F., Russo, G.: High order semi-implicit schemes for time dependent partial differential equations. J. Sci. Comput. 68(3), 975–1001 (2016)

    Article  MathSciNet  Google Scholar 

  30. Mukherjee, K., Natesan, S.: Richardson extrapolation technique for singularly perturbed parabolic convection-diffusion problems. Computing. 92(1), 1–32 (2011)

    Article  MathSciNet  Google Scholar 

  31. Shishkina, L., Shishkin, G.I.: The discrete Richardson method for semilinear parabolic singularly perturbed convection-diffusion equations. In Proc. Int. Conf. on Mathematical Modelling and Analysis, pages 259–264 (2005)

  32. Natividad, M.C., Stynes, M.: Richardson extrapolation for a convecion-diffusion problem using a Shishkin mesh. Appl. Numer. Math. 45, 315–329 (2003)

    Article  MathSciNet  Google Scholar 

  33. Clavero, C., Jorge, J.C., Lisbona, F.: A uniformly convergent scheme on a nonuniform mesh for convection-diffusion parabolic problems. J. Comput. Appl. Math. 154, 415–429 (2003)

    Article  MathSciNet  Google Scholar 

  34. Shishkin, G.I.: Grid approximation of singularly perturbed elliptic and parabolic equations. Second Doctoral Thesis, Keldysh Institute, U.S.S.R. Academy of Sciences, Moscow (1990). In Russian

  35. Kellogg, R.B., Tsan, A.: Analysis of some differences approximations for a singular perturbation problem without turning point. Math. Comp. 32(144), 1025–1039 (1978)

    Article  MathSciNet  Google Scholar 

  36. Stynes, M., Roos, H.G.: The midpoint upwind scheme. Appl. Numer. Math. 23, 361–374 (1997)

    Article  MathSciNet  Google Scholar 

  37. Stynes, M., Tobiska, L.: A finite difference analysis of a streamline diffusion method on a Shishkin mesh. Numer. Algorithms. 18, 337–360 (1998)

    Article  MathSciNet  Google Scholar 

  38. Ortega, J.M., Rheinboldt, W.C.: Iterative solution of nonlinear equations in several variables. SIAM (2000)

  39. Keller, H.B.: Numerical methods for two-point boundary value problems. Dover, New York (1992)

    Google Scholar 

  40. Miller, J.J.H., O’Riordan, E., Shishkin, G.I., Shishkina, L.P.: Fitted mesh methods for problems with parabolic boundary layers. Math. Proc. R. Ir. Acad. 98 A(2):173–190 (1998)

  41. Ng-Stynes, M.J., O’Riordan, E., Stynes, M.: Numerical methods for time-dependent convection-diffusion equations. J. Comput. Appl. Math. 21, 289–310 (1988)

    Article  MathSciNet  Google Scholar 

  42. Yadav, N.S., Mukherjee, K.: Higher-order uniform convergence and order reduction analysis of a novel fractional-step FMM for singularly perturbed 2D parabolic PDEs with time-dependent boundary data. J. Appl. Anal. Comput. (2023). (in press)

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the anonymous reviewers for their constructive comments and valuable suggestions. The first author wishes to thank Indian Institute of Space Science and Technology (IIST), for the financial support during his Ph.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Mukherjee.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, N.S., Mukherjee, K. Efficient parameter-robust numerical methods for singularly perturbed semilinear parabolic PDEs of convection-diffusion type. Numer Algor 96, 925–973 (2024). https://doi.org/10.1007/s11075-023-01670-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01670-2

Keywords

AMS Subject Classifications