Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

\(H^{1}\)-norm error analysis of a robust ADI method on graded mesh for three-dimensional subdiffusion problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This work proposes a robust ADI scheme on graded mesh for solving three-dimensional subdiffusion problems. The Caputo fractional derivative is discretized by L1 scheme, where the graded mesh is used to eliminate the weak singular behavior of the exact solution at the initial time \(t=0\). The spatial derivatives are approximated by the finite difference method. Based on the improved discrete fractional \(Gr\ddot{o}nwall\) inequality, we prove the stability and \(\alpha \)-robust \(H^{1}\)-norm convergence, in which the error bound does not blow up when the order of fractional derivative \(\alpha \rightarrow 1^{-}\). The 3D numerical examples are proposed to verify the efficiency and accuracy of the ADI method. The CPU time is also provided, which shows the proposed method is very efficient for 3D subdiffusion problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Algorithm 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Tabata, M., Eshima, N., Takagi, I.: A geometrical similarity between migration of human population biological and diffusion of particles nonlinear analysis. Real World Applications 7(4), 872–894 (2006)

    Article  MathSciNet  Google Scholar 

  2. Abdulhameed, M., Muhammad, M.M., Gital, A.Y., Yakubu, D.G., Khan, I.: Effect of fractional derivatives on transient MHD flow and radiative heat transfer in a micro-parallel channel at high zeta potentials. Physica A. 519, 42–71 (2019)

    Article  MathSciNet  Google Scholar 

  3. Constantinescu, C.D., Ramirez, J.M., Zhu, W.R.: An application of fractional differential equations to risk theory. Financ. Stoch. 23, 1001–1024 (2019)

    Article  MathSciNet  Google Scholar 

  4. Chidiac, S.E., Shafikhani, M.: Electrical resistivity model for quantifying concrete chloride diffusion coefficient. Cem. Concr. Compos. 113, 103707 (2020)

    Article  Google Scholar 

  5. Liao, H., Zhang, Y., Zhao, Y., Shi, H.: Stability and convergence of modified Du Fort-Frankel schemes for solving time-fractional subdiffusion equations. J. Sci. Comput. 61(3), 629–648 (2014)

    Article  MathSciNet  Google Scholar 

  6. Wang, Y., Ren, L.: A high-order L2-compact difference method for Caputo-type time-fractional sub-diffusion equations with variable coefficients. Appl. Math. Comput. 342, 71–93 (2019)

    MathSciNet  Google Scholar 

  7. Ren, J., Sun, Z.Z., Zhao, X.: Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 232(1), 456–467 (2013)

    Article  MathSciNet  Google Scholar 

  8. Zhang, Y., Sun, Z.Z.: Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. of Comput. Phys. 230(24), 8713–8728 (2011)

    Article  MathSciNet  Google Scholar 

  9. Gao, G., Sun, Z.Z.: A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 230(3), 586–595 (2011)

    Article  MathSciNet  Google Scholar 

  10. Lukashchuk, S.Y.: Conservation laws for time-fractional subdiffusion and diffusion-wave equations. Nonlinear Dyn. 80, 791–802 (2015)

    Article  MathSciNet  Google Scholar 

  11. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

    Article  MathSciNet  Google Scholar 

  12. Ren, J., Chen, H.: A numerical method for distributed order time fractional diffusion equation with weakly singular solutions. Appl. Math. Lett. 96, 159–165 (2019)

    Article  MathSciNet  Google Scholar 

  13. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  Google Scholar 

  14. Kopteva, N., Stynes, M.: A posteriori error analysis for variable-coefficient multiterm time-fractional subdiffusion equations. J. Sci. Comput. 92(2), 73 (2022)

    Article  MathSciNet  Google Scholar 

  15. Gao, G., Sun, H., Sun, Z.: Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence. J. Comput. Phys. 280, 510–528 (2015)

    Article  MathSciNet  Google Scholar 

  16. Zhai, S., Weng, Z., Feng, X., Yuan, J.: Investigations on several high-order ADI methods for time-space fractional diffusion equation. Numer. Algorithms. 82, 69–106 (2019)

    Article  MathSciNet  Google Scholar 

  17. Wu, L., Zhai, S.: A new high order ADI numerical difference formula for time-fractional convection-diffusion equation. Appl. Math. Comput. 387, 124564 (2020)

    MathSciNet  Google Scholar 

  18. Zhai, S., Wei, L., Huang, L., Feng, X.: An efficient algorithm with high accuracy for time-space fractional heat equations. Numer. Heat Tran. B-Fund. 67(6), 550–562 (2015)

    Article  Google Scholar 

  19. Du, R., Alikhanov, A.A., Sun, Z.: Temporal second order difference schemes for the multi-dimensional variable-order time fractional sub-diffusion equations. Comput. Math. Appl. 79(10), 2952–2972 (2020)

    Article  MathSciNet  Google Scholar 

  20. Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35(6), A2976–A3000 (2013)

    Article  MathSciNet  Google Scholar 

  21. Zeng, F., Li, C., Liu, F., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37(1), A55–A78 (2015)

    Article  MathSciNet  Google Scholar 

  22. Balasim, A.T., Ali, H.M.N.: New group iterative schemes in the numerical solution of the two-dimensional time fractional advection-diffusion equation. Cogent Math. 4(1), 1412241 (2017)

    Article  MathSciNet  Google Scholar 

  23. Wang, Y., Chen, H., Sun, T.: \(\alpha \)-Robust \(H^{1}\)-norm convergence analysis of ADI scheme for two-dimensional time-fractional diffusion equation. Appl. Numer. Math. 168, 75–83 (2021)

    Article  MathSciNet  Google Scholar 

  24. Yang, X., Wu, L., Zhang, H.: A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity. Appl. Math. Comput. 457, 128192 (2023)

    MathSciNet  Google Scholar 

  25. Zeng, F., Liu, F., Li, C., Turner, I., Anh, V.: A Crank-Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM J. Numer. Anal. 52(6), 2599–2622 (2014)

    Article  MathSciNet  Google Scholar 

  26. Zeng, F., Li, C., Liu, F., Turner, I.: Numerical algorithms for time-fractional subdiffusion equation with second-order accuracy. SIAM J. Sci. Comput. 37(1), A55–A78 (2015)

    Article  MathSciNet  Google Scholar 

  27. Zhou, Z., Zhang, H., Yang, X., Tang, J.: An efficient ADI difference scheme for the nonlocal evolution equation with multi-term weakly singular kernels in three dimensions. Int. J. Comput. Math. 1–18 (2023)

  28. Tian, Q., Yang, X., Zhang, H., Xu, D.: An implicit robust numerical scheme with graded meshes for the modified Burgers model with nonlocal dynamic properties. Comput. Appl. Math. 42(6), 246 (2023)

    Article  MathSciNet  Google Scholar 

  29. Zhai, S., Feng, X., He, Y.: An unconditionally stable compact ADI method for three-dimensional time-fractional convection-diffusion equation. J. Comput. Phys. 269, 138–155 (2014)

    Article  MathSciNet  Google Scholar 

  30. Zhai, S., Weng, Z., Gui, D., Feng, X.: High-order compact operator splitting method for three-dimensional fractional equation with subdiffusion. Int. J. Heat Mass Tran. 84, 440–447 (2015)

    Article  Google Scholar 

  31. Roul, P., Rohil, V.: A high-order numerical scheme based on graded mesh and its analysis for the two-dimensional time-fractional convection-diffusion equation. Comput. Math. Appl. 126, 1–13 (2022)

    Article  MathSciNet  Google Scholar 

  32. Zhang, Y., Sun, Z.: Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 230(24), 8713–8728 (2011)

    Article  MathSciNet  Google Scholar 

  33. Chen, H., Stynes, M.: Blow-up of error estimates in time-fractional initial-boundary value problems. IMA J. Numer. Anal. 41(2), 974–997 (2021)

    Article  MathSciNet  Google Scholar 

  34. Liao, H., McLean, W., Zhang, J.: A discrete Gronwall inequality with applications to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57(1), 218–237 (2019)

    Article  MathSciNet  Google Scholar 

  35. Huang, C., Stynes, M.: \(\alpha \)-robust error analysis of a mixed finite element method for a time-fractional biharmonic equation. Numer. Algorithms 87, 1749–1766 (2021)

    Article  MathSciNet  Google Scholar 

  36. Huang, C., An, N., Chen, H.: Optimal pointwise-in-time error analysis of a mixed finite element method for a multi-term time-fractional fourth-order equation. Comput. Math. Appl. 135, 149–156 (2023)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for many helpful suggestions.

Funding

The work was supported by National Natural Science Foundation of China (12226337, 12226340, 12126321), Scientific Research Fund of Hunan Provincial Education Department (21B0550), Hunan Provincial Natural Science Foundation (2022JJ50083, 2023JJ50164), and Hunan Provincial Innovation Foundation For Postgraduate (CX20231110).

Author information

Authors and Affiliations

Authors

Contributions

Haixiang Zhang provided the methodology along with the model problem. Ziyi Zhou implemented the scheme, obtained the error analysis and the numerical experiments and writing the manuscript. Xuehua Yang revised the manuscript for important content.

Corresponding author

Correspondence to Haixiang Zhang.

Ethics declarations

Ethical approval

The authors consent to participate and consent to publish of this manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Zhang, H. & Yang, X. \(H^{1}\)-norm error analysis of a robust ADI method on graded mesh for three-dimensional subdiffusion problems. Numer Algor 96, 1533–1551 (2024). https://doi.org/10.1007/s11075-023-01676-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-023-01676-w

Keywords