Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Fibre optic track vibration monitoring system

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Track monitoring systems are a fundamental part of railroad safety. With the electrification and development of train traction control electronics, levels of electromagnetic interference (EMI) close to railroad monitoring systems are reaching critical levels. Unreliable track safety and fault monitoring systems could affect the efficient and safe functioning of railroads and therefore strict demands must be placed on track monitoring systems to ensure electromagnetic compatibility. The Prague subway system is not an exception. An alternative track vibration monitoring system has been proposed, demonstrated and tested along a single railway track in the Prague subway system. Two passive detection systems placed 50 m and 1.3 km away from the control room were used to measure tunnel vibrations triggered by passing trains free from the effect of any unrelated EMI existing in the subway tunnel. Fibre optic based systems immune to EMI can offer an efficient solution to both track and train monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Butter, C.D., Hocker, G.B.: Fiber optics strain gauge. Appl. Opt. 17(18), 2867–2869 (1978). doi:10.1364/AO.17.002867

    Article  ADS  Google Scholar 

  • Cubik, J., Kepak, S., Doricak, J., Vasinek, V., Jaros, J., Liner, A., Papes, M., Fajkus, M.: The usability analysis of different standard single-mode optical fibers and its installation methods for the interferometric measurements. Adv. Electr. Electron. Eng. 11(6), 535–542 (2013). doi:10.15598/aeee.v11i6.885

    Google Scholar 

  • Giallorenzi, T., Bucaro, J., Dandridge, A., Sigel, G., Cole, J., Rashleigh, S., Priest, R.: Optical fiber sensor technology. IEEE J. Quantum Electron. 18(4), 626–665 (1982). doi:10.1109/JQE.1982.1071566

    Article  ADS  Google Scholar 

  • Kepak, S., Cubik, J., Doricak, J., Vasinek, V., Siska, P., Liner, A., Papes, M.: The arms arrangement influence on the sensitivity of Mach-Zehnder fiber optic interferometer. Proc. SPIE Int. Soc. Opt. Eng. (2013). doi:10.1117/12.2017305

    Google Scholar 

  • Kumagai, T., Ohnuki, W., Hayashiya, H., Nishida, K.: Interferometric fiber-optic electric current sensor for railway power systems. IEEJ Trans. Sens. Micromach. 133(2), 42–47 (2013). doi:10.1541/ieejsms.133.42

    Article  Google Scholar 

  • Minardo, A., Porcaro, G., Giannetta, D., Bernini, R., Zeni, L.: Railway traffic monitoring using Brillouin distributed sensors. Proc. SPIE Int. Soc. Opt. Eng. (2013). doi:10.1117/12.2025991

    Google Scholar 

  • Parker, S.: Track Design Handbook for Light Rail Transit, second edn. Transportation Research Board, Washington (2012)

    Google Scholar 

  • Peng, F., Duan, N., Rao, Y., Li, J.: Real-time position and speed monitoring of trains using phase-sensitive OTDR. IEEE Photonics Technol. Lett. 26(20), 2055–2057 (2014). doi:10.1109/LPT.2014.2346760

    Article  ADS  Google Scholar 

  • Sokoiowski, K., Domanski, A.W., Wolinski, T.R.: Intensity-based fiber optic bend sensor for potential railway application. Proc. SPIE Int. Soc. Opt. Eng. 5484, 417–420 (2004). doi:10.1117/12.568927

    ADS  Google Scholar 

  • Tam, H., Liu, S., Ho, S., Ho, T.: Fiber bragg grating sensors for railway systems. In: Cusano, A., Cutolo, A., Albert, J. (eds.) Fiber Bragg Grating Sensors: Recent Advancements. Industrial Applications and Market Exploitation. Bentham Science Publishers, Sharjah (2011). doi:10.2174/978160805084011101010197

    Google Scholar 

  • Thompson, D.: Railway Noise and Vibration: Mechanisms, Modelling and Means of Control. Elsevier, Amsterdam (2009)

    Google Scholar 

  • Udd, E., Spillman, W.B.: Fiber Optic Sensors: An Introduction for Engineers and Scientists, Second edn. Wiley, New Jersey (2011). doi:10.1002/9781118014103

    Book  Google Scholar 

  • Veeser, L.R., Forman, P.R., Rodriguez, P.J.: Lensless magneto-optic speed sensor. United States Patent, 1998

  • Vér, I.L., Ventres, C.S., Myles, M.M.: Wheel/rail noise-part III: impact noise generation by wheel and rail discontinuities. J. Sound Vib. 46(3), 395–417 (1976). doi:10.1016/0022-460X(76)90863-4(1976)

    Article  ADS  Google Scholar 

  • Yuen, K.K.: Novel application of a fibre optic-based train weigh-in-motion system in railway. HKIE Trans. 21(4), 272–280 (2014). doi:10.1080/1023697X.2014.970752

    Article  Google Scholar 

Download references

Acknowledgments

The research described in this article could be carried out thanks to the active support of the Ministry of Education, Youth and Sports of the Czech Republic through Grant project no. CZ.1.07/2.3.00/20.0217 within the frame of the operation programme Education for competitiveness financed by the European Structural Funds and from the state budget of the Czech Republic. This article was also supported by project Technology Agency of the Czech Republic TA03020439 and TA04021263. The research has been partially supported by the projects no. SP2016/149 and VI20152020008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Kepak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kepak, S., Cubik, J., Zavodny, P. et al. Fibre optic track vibration monitoring system. Opt Quant Electron 48, 354 (2016). https://doi.org/10.1007/s11082-016-0616-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0616-9

Keywords