Abstract
A color image encryption scheme is proposed by using a hyperchaotic system in gyrator transform domains. The red, green and blue (RGB) components of the original color image are encoded into one dimensional stream, respectively. Four chaotic sequences generated by a hyperchaotic system are blended into the streams to synthesize complex sequences. Subsequently the one dimensional complex streams are scrambled by employing discrete cosine transform and then encoded back to image format. Finally, the scrambled complex functions are encoded and transformed in gyrator domains. The parameters in the hyperchaotic system and the gyrator optical system are regarded as the extra keys for improving the security of the proposed scheme. Some numerical simulations are made to test the validity and capability of the proposed color encryption algorithm.
Similar content being viewed by others
References
Abuturab, M.R.: Color information cryptosystem based on optical superposition rinciple and phase-truncated gyrator transform. Appl. Opt. 51, 7994–8002 (2012)
Abuturab, M.R.: Color image security system based on discrete Hartley transform in gyrator transform domain. Opt. Lasers Eng. 51, 317–324 (2013)
Abuturab, M.R.: An asymmetric color image cryptosystem based on Schur decomposition in gyrator transform domain. Opt. Lasers Eng. 58, 39–47 (2014a)
Abuturab, M.R.: Color information verification system based on singular value decomposition in gyrator transform domain. Opt. Lasers Eng. 57, 13–19 (2014b)
Alfalou, A., Brosseau, C.: Optical image compression and encryption methods. Adv. Opt. Photonics 1, 589–636 (2009)
Chee, C., Xu, D.: Secure digital communication using controlled projective synchronisation of chaos. Chaos, Solitons Fractals 23, 1063–1070 (2005)
Chen, L., Zhao, D., Ge, F.: Color image encoding in dual fractional Fourier–wavelet domain with random phases. Opt. Commun. 282, 3433–3438 (2009)
Chen, W., Chen, X., Sheppard, C.J.R.: Optical color-image encryption and synthesis using coherent diffractive imaging in the Fresnel domain. Opt. Express 20, 3853–3865 (2012)
Chen, H., Du, X., Liu, Z., Yang, C.: Color image encryption based on the affine transform and gyrator transform. Opt. Lasers Eng. 51, 768–775 (2013a)
Chen, W., Situ, G., Chen, X.: High-flexibility optical encryption via aperture movement. Opt. Express 21, 24680–24691 (2013b)
Chen, H., Zhao, J., Liu, Z., Du, X.: Opto-digital spectrum encryption by using Baker mapping and gyrator transform. Opt. Lasers Eng. 66, 285–293 (2015a)
Chen, H., Du, X., Liu, Z., Yang, C.: Optical color image hiding scheme by using Gerchberg–Saxton algorithm in fractional Fourier domain. Opt. Lasers Eng. 66, 144–151 (2015b)
Hennelly, B., Sheridan, J.T.: Optical image encryption by random shifting in fractional Fourier domains. Opt. Lett. 28, 269–271 (2003)
Lang, J.: Image encryption based on the reality-preserving multiple-parameter fractional Fourier transform and chaos permutation. Opt. Lasers Eng. 50, 929–937 (2012)
Lin, J., Huang, C., Liao, T., Yan, J.: Design and implementation of digital secure communication based on synchronized chaotic systems. Digit. Signal Process. 20, 229–237 (2010)
Liu, Z., Liu, S.: Random fractional Fourier transform. Opt. Lett. 32, 2088–2090 (2007)
Liu, Z., Xu, L., Lin, C., Dai, J., Liu, S.: Image encryption scheme by using iterative random phase encoding in gyrator transform domains. Opt. Lasers Eng. 49, 542–546 (2011)
Liu, Z., Guo, C., Tan, J., Liu, W., Wu, J., Wu, Q., Pan, L., Liu, S.: Securing color image by using phase-only encoding in Fresnel domains. Opt. Lasers Eng. 68, 87–92 (2015)
Mehra, I., Rajput, S.K., Nishchal, N.K.: Cryptanalysis of an image encryption scheme based on joint transform correlator with amplitude- and phase-truncation approach. Opt. Lasers Eng. 52, 167–173 (2014)
Meng, X.F., Cai, L.Z., Xu, X.F., Yang, X.L., Shen, X.X., Dong, G.Y., et al.: Two-step phase-shifting interferometry and its application in image encryption. Opt. Lett. 31, 1414–1416 (2006)
Ozaktas, H.M., Zalevsky, Z., Kutay, M.A.: Fractional Fourier Transform with Applications in Optics and Signal Processing. Wiley, New York (2000)
Peng, X., Zhang, P., Wei, H., Yu, B.: Known-plaintext attack on optical encryption based on double random phase keys. Opt. Lett. 31, 1044–1046 (2006a)
Peng, X., Wei, H., Zhang, P.: Chosen-plaintext attack on lensless double-random phase encoding in the Fresnel domain. Opt. Lett. 31, 3261–3263 (2006b)
Refregier, P., Javidi, B.: Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett. 20, 767–769 (1995)
Rodrigo, J.A., Alieva, T., Calvo, M.L.: Experimental implementation of the gyrator transform. J. Opt. Soc. Am. A 24, 3135–3139 (2007)
Simon, R., Wolf, K.B.: Structure of the set of paraxial optical systems. J. Opt. Soc. Am. A 17, 342–355 (2000)
Sui, L., Lu, H., Wang, Z., Sun, Q.: Double-image encryption using discrete fractional random transform and logistic maps. Opt. Lasers Eng. 56, 1–12 (2014)
Zhong, Z., Chang, J., Shan, M., Hao, B.: Fractional Fourier-domain random encoding and pixel scrambling technique for double image encryption. Opt. Commun. 285, 18–23 (2012)
Zhu, C.: A novel image encryption scheme based on improved hyperchaotic sequences. Opt. Commun. 285, 29–37 (2012)
Zhu, N., Wang, Y., Liu, J., Xie, J., Zhang, H.: Optical image encryption based on interference of polarized light. Opt. Express 17, 13418–13424 (2009)
Acknowledgments
This work was supported by the National Natural Science Foundation of China (Grant 61575053), the Fundamental Research Funds for the Central Universities (No. HIT.BRETIII.201406), the Program for New Century Excellent Talents in University (NCET-12-0148), and the China Postdoctoral Science Foundation (2013M540278). The authors wish to thanks Mr. Chengwei Yang in Baicheng Ordnance Test Center of China for the valuable discussion. The authors wish to thank the reviewers for their useful comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, H., Tanougast, C., Liu, Z. et al. Securing color image by using hyperchaotic system in gyrator transform domains. Opt Quant Electron 48, 396 (2016). https://doi.org/10.1007/s11082-016-0669-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11082-016-0669-9