Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A relative radiometric correction method for airborne SWIR hyperspectral image using the side-slither technique

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Stripe noise still remains in airborne short-wave infrared (SWIR) hyperspectral (HS) images after laboratory calibration due to the stray light of HS imager, nonlinear response of infrared focal plane array, and the distinct difference of equivalent color temperature between the integrating sphere and the sun. It is difficult to get a sun-like radiation source, and we apply the side-slither technique for relative radiometric correction of HS images. The calibration data corresponding to different irradiance were obtained by the side-slither technique of imager. Then, the two-point multi-section method is used for relative radiometric correction of HS images. This paper presents the principle, the experimental results, and the analysis of the proposed method. To validate the effectiveness of this method, it was compared with other methods and evaluated by quantitative quality indices. The results reveal that this method has a good performance in relative radiometric correction of HS image and is superior to the laboratory calibration based on integrating sphere. Consequently, the proposed method can successfully eliminate the adverse effect caused by the difference of equivalent color temperature between radiation sources, and also can improve the accuracy of HS applications such as absolute radiation correction and target recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Acito, N., Diani, M., Corsini, G.: Subspace-based striping noise reduction in hyperspectral images. IEEE Trans. Geosci. Remote Sens. 49(4), 1325–1342 (2011)

    Article  ADS  Google Scholar 

  • Aizenberg, I.N., Butakoff, C.: Frequency domain medianlike filter for periodic and quasi-periodic noise removal. Proc. SPIE Image Process. Algorithms Syst. 4667, 181–191 (2002)

    Article  ADS  Google Scholar 

  • Anderson, C., Naughton, D., Brunn, A., Thiele M.: Radiometric correction of RapidEye imagery using the on-orbit side-slither method. In: Proceedings on Image and Signal Processing for Remote Sensing, vol. XVII, p. 818008. SPIE 8180, (2011). https://doi.org/10.1117/12.898411

  • Bishop, C.A., Liu, J.G., Mason, P.J.: Hyperspectral remote sensing for mineral exploration in Pulang, Yunnan Province, China. Int. J. Remote Sens. 32(9), 2109–2426 (2011). https://doi.org/10.1080/01431161003698336

    Article  Google Scholar 

  • Chen, B., Liu, G., Huang, Z., Yan, S.: Multi-task low-rank affinities pursuit for image segmentation. In: Proceedings of IEEE International Conference. Computer Vision, pp. 2439–2446 (2011)

  • Chen, J., Shao, Y., Guo, H., Wang, W., Zhu, B.: Destriping CMODIS data by power filtering. IEEE Trans. Geosci. Remote Sens. 41(9), 2119–2124 (2003)

    Article  ADS  Google Scholar 

  • Corsini, G., Diani, M., Walzel, T.: Striping removal in MOS-B data. IEEE Trans. Geosci. Remote Sens. 38(3), 1439–1446 (2000)

    Article  ADS  Google Scholar 

  • Ellis, R.J., Scott, P.W.: Evaluation of hyperspectral remote sensing as a means of environmental monitoring in the St. Austell China clay (kaolin) region, Cornwall, UK. Remote Sens. Environ. 93, 118–130 (2004)

    Article  ADS  Google Scholar 

  • Gadallah, F.L., Csillag, F., Smith, E.J.M.: Destriping multisensory imagery with moment matching. Int. J. Remote Sens. 21(12), 2505–2511 (2000)

    Article  ADS  Google Scholar 

  • Gerace, D., Schott, J.R., Brown, S.D., Gartley, M.G.: Using DIRSIG to identify uniform sites and demonstrate the utility of the side-slither calibration technique for Landsat’s new pushbroom instruments. In: Proceedings on Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery, vol. XVIII, p. 83902A. SPIE 8390 (2012). https://doi.org/10.1117/12.919327ss

  • Hao, Z., Song, H.J., Yu, B.C.: Application of hperspectral remote sensing for urban forestry monitoring in natural disaster zones. Int. Conf. Comput. Manag. (2011). https://doi.org/10.1109/CAMAN.2011.5778867

    Article  Google Scholar 

  • Hayat, M., Torre, N.S., Armstrong, E., Cain, C., Yasuda, B.: Statistical algorithm for nonuniformity correction in focal-plane arrays. Appl. Opt. 38(8), 772–780 (1999)

    Article  ADS  Google Scholar 

  • Henderson, B.G., Krause, K.S.: Relative radiometric correction of QuickBird imagery using the sideslither technique on orbit. In: Proceedings on Earth Observing Systems, vol. IX. SPIE 5542, (2004). https://doi.org/10.1117/12.559910

  • Horn, B.K.P., Woodham, R.J.: Destriping Landsat MSS images by histogram modification. Comput. Graph. Image Process. 10(1), 69–83 (1979)

    Article  Google Scholar 

  • Hu, Z., Su, X., Li, X., Zhang, L., Chen, F.: A method for the characterization of intra-pixel response of infrared sensor. Opt. Quantum Electron. (2019). https://doi.org/10.1007/s11082-019-1790-3

    Article  Google Scholar 

  • Jia, J., Wang, Y., Zhuang, X., Yao, Y., Wang, S., Zhao, D., Shu, R., Wang, J.: High spatial resolution shortwave infrared imaging technology based on time delay and digital accumulation method. Infrared Phys. Technol. 81, 305–312 (2017)

    Article  ADS  Google Scholar 

  • Jia, J., Wang, Y., Cheng, X., Yuan, L., Zhao, D., Ye, Q., Zhuang, X., Shu, R., Wang, J.: Destriping algorithms based on statical and spatial filtering for visible-to-thermal infrared pushbroom hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. (2019). https://doi.org/10.1109/TGRS.2018.2889731

    Article  Google Scholar 

  • Lang, C., Liu, G., Yu, J., Yan, S.: Saliency detection by multi-task sparsity pursuit. IEEE Trans. Image Process. 21(3), 1327–1338 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  • Li, Y., Zhang, B., He, H.: Relative radiometric correction of imagery based on the side-slither method. In: 2017 2nd International Conference on Multimedia and Image Processing, (2017)

  • Li, X., Su, X., Hu, Z., Yang, L., Zhang, L., Chen, F.: Improved distortion correction method and applications for large aperture infrared tracking cameras. Infrared Phys. Technol. (2019). https://doi.org/10.1016/j.infrared.2019.02.009

    Article  Google Scholar 

  • Liu, J.G., Morgan, G.L.K.: FFT selective and adaptive filtering forremoval of systematic noise in ETM+imageodesy images. IEEE Trans. Geosci. Remote Sens. 44(12), 3716–3724 (2006)

    Article  ADS  Google Scholar 

  • Liu, Z.J., Wang, C.Y., Wang, C.: Destriping imaging spectrometer data by an improved moment matching method. J. Remote Sens. 6(4), 278–284 (2002)

    Google Scholar 

  • Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013)

    Article  Google Scholar 

  • Liu, Y., Yang, L., Chen, F.: Multispectral registration method based on stellar trajectory fitting. Opt. Quantum Electron. 50(4), 189 (2018)

    Article  Google Scholar 

  • Lu, X., Wang, Y., Yuan, Y.: Graph-regularized low-rank representation for destriping of hyperspectral images. IEEE Trans. Geosci. Remote Sens. 51(7), 4009–4018 (2013)

    Article  ADS  Google Scholar 

  • Mulla, D.J.: Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Bioprocess Biosyst. Eng. 114(4), 358–371 (2013)

    Article  Google Scholar 

  • Olmanson, L.G., Brezonik, P.L., Bauer, M.E.: Airborne hyperspectral remote sensing to assess spatial distribution of water quality characteristics in large rivers: the Mississippi River and its tributaries in Minnesota. Remote Sens. Environ. 130, 254–265 (2013)

    Article  ADS  Google Scholar 

  • Rakwatin, P., Takeuchi, W., Yasuoka, Y.: Stripe noise reduction in MODIS data by combining histogram matching with facet filter. IEEE Trans. Geosci. Remote Sens. 45(6), 1844–1856 (2007)

    Article  ADS  Google Scholar 

  • Wang, M., Franz, B.A.: Comparing the ocean color measurements between MOS and SeaWiFS: a vicarious intercalibration approach for MOS. IEEE Trans. Geosci. Remote Sens. 38(1), 184–197 (2000)

    Article  ADS  Google Scholar 

  • Wang, Y., Cheng, J., Liu, Y., Xue, Y.: Study on two-point multi-section IRFPA nonuniformity correction algorithm. J. Infrared Millim. Waves 22(6), 415–418 (2003)

    Google Scholar 

  • Wang, H., Ma, C., Cao, J., Zhang, H.: An adaptive two-point multi-section nonuniformity correction algorithm based on shutter and its implementation. In Proceedings on SPIE the International Society for Optical Engineering, 7658 (2010). https://doi.org/10.1109/icmtma.2013.51

  • Wang, X., Wang, P., Wang, J., Weida, H., Zhou, X., Guo, N., Huang, H., Sun, S., Shen, H., Lin, T., Tang, M., Liao, L., Jiang, A., Sun, J., Meng, X., Chen, X., Wei, L., Chu, J.: Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv. Mater. 27(42), 6575–6581 (2015)

    Article  Google Scholar 

  • Wang, P., Liu, S., Luo, W., Fang, H., Gong, F., Guo, N., Chen, Z.-G., Zou, J., Huang, Y., Zhou, X., Wang, J., Chen, X., Wei, L., Xiu, F., Weida, H.: Arrayed van der Waals broadband detectors for dual band detection. Adv. Mater. 29(16), 1604439 (2017)

    Article  Google Scholar 

  • Zarco-Tejada, P.J., Guillen-Climent, M.L., Hernandez-Clemente, R., Catalina, A.: Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV). Agric. For. Meteorol (2013). https://doi.org/10.1016/j.agrformet.2012.12.013

    Article  Google Scholar 

  • Zhang, M., Carder, K., Muller-Karger, F.E., Lee, Z., Goldgof, D.B.: Noise reduction and atmospheric correction for coastal applications of landsat thematic mapper imagery. Remote Sens. Environ. 70(2), 167–180 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Shiyao Zhou and Jialiang Wu for their support and help in the imaging experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-ming Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In the process of laboratory calibration based on integrating sphere, the response DNs of detector pixel and the average response DNs for N different irradiance are denoted by (x1, x2,…, xN) and (y1, y2,…, yN), respectively. According to the linear model shown in formula (1) and the least square method, the corrected gain and offset are shown as following.

$$k = \frac{{N\left( {\sum {x_{i} y_{i} } } \right) - \left( {\sum {x_{i} } } \right)\left( {\sum {y_{i} } } \right)}}{{N\left( {\sum {x_{i}^{2} } } \right) - \left( {\sum {x_{i} } } \right)^{2} }}$$
(12)
$$b = \frac{{\left( {\sum {x_{i}^{2} } } \right)\left( {\sum {y_{i} } } \right) - \left( {\sum {x_{i} } } \right)\left( {\sum {x_{i} y_{i} } } \right)}}{{N\left( {\sum {x_{i}^{2} } } \right) - \left( {\sum {x_{i} } } \right)^{2} }}$$
(13)

However, there is stray light in the imager in imaging process. When stray light is considered as an additive noise, the response DN of detector pixel and average response DN can be expressed as \(x_{i} + \Delta x_{i}\) and yi+ Δyi, respectively. Therefore, the corrected gain can be expressed as:

$$\begin{aligned} k^{'} = \frac{{N\left( {\sum {\left( {x_{i} + \Delta x_{i} } \right)(y_{i} + \Delta y_{i} )} } \right) - \left( {\sum {\left( {x_{i} + \Delta x_{i} } \right)} } \right)\left( {\sum {(y_{i} + \Delta y_{i} )} } \right)}}{{N\left( {\sum {\left( {x_{i} + \Delta x_{i} } \right)^{2} } } \right) - \left( {\sum {\left( {x_{i} + \Delta x_{i} } \right)} } \right)^{2} }} \hfill \\ \, = \frac{{N\left( {\sum {x_{i} y_{i} } } \right) - \left( {\sum {x_{i} } } \right)\left( {\sum {y_{i} } } \right) + N\left( {\left( {\sum {x_{i} \Delta y_{i} } } \right) + \left( {\sum {y_{i} \Delta x_{i} } } \right) + (\sum {\Delta x_{i} \Delta y_{i} } )} \right) - \left( {\sum {x_{i} } } \right)\left( {\sum {\Delta y_{i} } } \right) - \left( {\sum {\Delta x_{i} } } \right)\left( {\sum {y_{i} } } \right) - \left( {\sum {\Delta x_{i} } } \right)\left( {\sum {\Delta y_{i} } } \right)}}{{N\left( {\sum {x_{i}^{2} } } \right) - \left( {\sum {x_{i} } } \right)^{2} + 2N\left( {\sum {x_{i} \Delta x_{i} } } \right) + N\left( {\sum {\Delta x_{i}^{2} } } \right) - 2\left( {\sum {x_{i} } } \right)\left( {\sum {\Delta x_{i} } } \right) - \left( {\sum {\Delta x_{i} } } \right)^{2} }} \hfill \\ \, = \frac{{N\left( {\sum {x_{i} y_{i} } } \right) - \left( {\sum {x_{i} } } \right)\left( {\sum {y_{i} } } \right) + \Delta \varepsilon_{1} }}{{N\left( {\sum {x_{i}^{2} } } \right) - \left( {\sum {x_{i} } } \right)^{2} + \Delta \varepsilon_{2} }} \hfill \\ \, = k + \Delta \delta_{k} \hfill \\ \end{aligned}$$
(14)

Similarly, the corrected offset can be expressed as:

$$b^{'} = b + \Delta \delta_{b}$$
(15)

Under a solar radiation, the response DN of the detector pixel is represented by \(V + \Delta V\). As shown in Fig. 2, when the spectrum ranges from 1.15 to 2.5 μm, the radiance of sunlight reflection is smaller than that of integrating sphere. When the corrected gain and offset are calculated using the data obtained by the integrating sphere, it belongs to the linear interpolation as shown in Fig. 14a. The error of corrected gain and offset introduced by linear interpolation can be neglected. Thus, the response DN of the detector pixel can be corrected to:

Fig. 14
figure 14

The relationship between the data obtained by imager under the sun radiation and integrating sphere radiation.‘*’represents the data acquired by imager under the integrating sphere radiation, and ‘o’ represents the data acquired by imager under the sun radiation. b Linear interpolation. b Linear extrapolation

$$\begin{aligned} V^{'} = k^{'} \times \left( {V + \Delta V} \right) + b^{'} \hfill \\ \, = k \times V + b + k \times \Delta V + V \times \Delta \delta_{k} + \Delta \delta_{k} \times \Delta V + \Delta \delta_{b} \hfill \\ \end{aligned}$$
(16)

Here, \(k \times \Delta V + V \times \Delta \delta_{k} + \Delta \delta_{k} \times \Delta V + \Delta \delta_{b}\) is the correction error introduced by the stray light of imager.

In contrast, when the spectrum ranges from 0.9 to 1.15 μm, the radiance of sunlight reflection is larger than that of integrating sphere. When the gain and offset are calculated using the data obtained by the integrating sphere, it belongs to the linear extrapolation as shown in Fig. 14b. The errors introduced by linear extrapolation are non-negligible, and the corrected gain and offset can be expressed as k′+ Δσk and b′ + Δσb, respectively. Thus, the response DN of the detector pixel can be corrected to:

$$\begin{aligned} V^{'} = \left( {k^{'} + \Delta \sigma_{k} } \right) \times \left( {V + \Delta V} \right) + \left( {b^{'} + \Delta \sigma_{b} } \right) \hfill \\ \, = k \times V + b + k \times \Delta V + V \times \Delta \delta_{k} + \Delta \delta_{k} \times \Delta V + \Delta \delta_{b} + \Delta \sigma_{k} \times V + \Delta \sigma_{k} \times \Delta V + \Delta \sigma_{b} \hfill \\ \end{aligned}$$
(17)

Compared with Formula (16), the correction error \(\Delta \sigma_{k} \times V + \Delta \sigma_{k} \times \Delta V + \Delta \sigma_{b}\) is introduced by the difference of equivalent color temperature between the integrating sphere and the sun. Here, Δσk× V increases with the response DN of detector pixel and is a non-negligible error term.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Xy., Zhuang, Xq., Zhang, D. et al. A relative radiometric correction method for airborne SWIR hyperspectral image using the side-slither technique. Opt Quant Electron 51, 105 (2019). https://doi.org/10.1007/s11082-019-1816-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-019-1816-x

Keywords