Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A bidirectional quantum remote state preparation scheme and its performance analysis in noisy environments

  • Research
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Quantum teleportation is a technique for allowing one party to transfer an unknown state to the other party some distance away. Different types of teleportation, including bidirectional teleportation have been proposed so far. The bidirectional protocol, plays a key role to improve the security and the efficiency of the quantum cryptographic schemas. Another branch of quantum communication is called quantum remote state preparation. Quantum remote state preparation is similar to the teleportation in terms of transferring a quantum state without physically sending it on the quantum channel. However, the difference is that in the latter, the state is known for the sender. In this research, a new bidirectional quantum remote state preparation protocol is proposed, where each party transfers a two-qubit state to each other simultaneously. The efficiency of this protocol is better than the previous ones. In addition, the effects of noise on the performance of the protocol are examined extensively. We estimate and analyze the fidelity of the protocol in a noisy environment with amplitude and phase damping noises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Availability of data and materials

The data that support the findings of this study are available from the authors, upon reasonable request.

References

  • Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  • Bohm, D.: Quantum Theory. Courier Corporation, USA (1951)

    Google Scholar 

  • Bolokian, M., Houshmand, M., Sadeghizadeh, M.S., Parvaneh, M.: Multi-party quantum teleportation with selective receiver. Int. J. Theor. Phys. 60, 828–837 (2021)

    MathSciNet  MATH  Google Scholar 

  • Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press on Demand, Oxford (2002)

    MATH  Google Scholar 

  • Cao, C., Han, Y.H., Zhang, L., Fan, L., Duan, Y.W., Zhang, R.: High-fidelity universal quantum controlled gates on electron-spin qubits in quantum dots inside single-sided optical microcavities. Adv. Quantum Technol. 2(10), 1900081 (2019)

    Google Scholar 

  • Cao, T.B., Nguyeen, B.A.: Deterrministic controlled bidirectional remote state preparation. Adv. Nat. Sci.: Nanosci. Nanotechnol. 5, 015003 (2014)

    ADS  Google Scholar 

  • Cao, T.B., Nguyen, V.H., Nguyen, B.A.: Flexible controlled joint remote preparation of an arbitrary two-qubit state via nonmaximally entangled quantum channels. Adv. Nat. Sci.: Nanosci. Nanotechnol. 7, 025007 (2016)

    ADS  Google Scholar 

  • Chang, L.W., Zheng, S.H., Gu, L.Z., Jin, L., Yang, Y.X.: Multiparty-controlled joint remote preparation of an arbitrary four-qubit cluster-type state via two different entangled quantum channels. Int. J. Theor. Phys. 54, 2864–2880 (2015)

    MathSciNet  MATH  Google Scholar 

  • Chen, Y.: Bidirectional controlled quantum teleportation by using five-qubit entangled state. Int. J. Theor. Phys. 53, 1454–1458 (2014)

    MATH  Google Scholar 

  • Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state. Int. J. Theor. Phys. 54(1), 269–272 (2015)

    MathSciNet  MATH  Google Scholar 

  • Chen, X.B., Ma, S.Y., Su, Y., Zhang, R., Yang, Y.X.: Controlled remote state preparation of arbitrary two and three qubit states via the Brown state. Quantum Inf. Process. 11, 1653–1667 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  • Choudhury, B.S., Samanta, S.: Perfect joint remote state preparation of arbitrary six-qubit cluster-type states. Quantum Inf. Process. 17, 175 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  • Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70(1), 012311 (2004)

    ADS  Google Scholar 

  • Deng, F.G., Zhou, H.Y., Long, G.L.: Bidirectional quantum secret sharing and secret splitting with polarized single photons. Phys. Lett. A 337(4–6), 329–334 (2005)

    ADS  MATH  Google Scholar 

  • Duan, Y.J., Zha, X.W.: Bidirectional quantum controlled teleportation via a six-qubit entangled state. Int. J. Theor. Phys. 53, 3870 (2014)

    MATH  Google Scholar 

  • Duan, Y.J., Zha, X.W., Sun, X.M., Xia, J.F.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state. Int. J. Theor. Phys. 53, 2697–2707 (2014)

    MATH  Google Scholar 

  • Ghodsollahee, I., Davarzani, Z., Zomorodi, M., Pławiak, P., Houshmand, M., Houshmand, M.: Connectivity matrix model of quantum circuits and its application to distributed quantum circuit optimization. Quantum Inf. Process. 20, 235 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  • Guan, X.W., Chen, X., Yang, Y.X.: Controlled-joint remote preparation of an arbitrary two-qubit state via non-maximally entangled channel. Int. J. Theor. Phys. 51, 3575–3586 (2012)

    MathSciNet  MATH  Google Scholar 

  • Han, Y.H., Cao, C., Fan, L., Zhang, R.: Heralded high-fidelity quantum hyper-CNOT gates assisted by charged quantum dots inside single-sided optical microcavities. Opt. Express 29(13), 20045–20062 (2021)

    ADS  Google Scholar 

  • Han, D., Wang, N., Wang, M., Qin, Z., Su, X.: Remote preparation and manipulation of squeezed light. Opt. Lett. 47(13), 3295–3298 (2022)

    ADS  Google Scholar 

  • Hasanpour, S.H., Houshmand, M.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum Inf. Process. 15(2), 905–912 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  • Hassanpour, S., Houshmand, M.: Efficient controlled quantum secure direct communication based on GHZ-like states. Quantum Inf. Process. 14, 739–753 (2015a)

    ADS  MathSciNet  MATH  Google Scholar 

  • Hassanpour, Sh. and Houshmand, M., “Bidirectional quantum controlled teleportation by using EPR states and entanglement swapping”, In 23th Iranian Conference on Electrical Engineering (ICEE), (2015b).

  • Hong, W.Q.: Asymmetric bidirectional controlled teleportation by using a seven-qubit entangled State. Int. J. Theor. Phys. 55(1), 384–387 (2016)

    MATH  Google Scholar 

  • Hou, K., Wang, J., Yuan, H., Shi, S.H.: Multiparty controlled remote preparation of two- particle state. Commun. Theor. Phys. 52, 848–852 (2009)

    ADS  MATH  Google Scholar 

  • Houshmand, M., Mohammadi, Z., Zomorodi, M.M., Houshmand, M.: An evolutionary approach to optimizing teleportation cost in distributed quantum computation. Int. J. Theor. Phys. 59, 1315–1329 (2020)

    MathSciNet  MATH  Google Scholar 

  • Huang, C.H., Yang, C.H., Chen, C.C., Dzurak, A.S., Goan, H.S.: High-fidelity and robust two-qubit gates for quantum-dot spin qubits in silicon. Phys. Rev. a. 99(4), 042310 (2019)

    ADS  Google Scholar 

  • Huelga, S.F., Plenio, M.B., Vaccaro, J.A.: Remote control of restricted sets of operations: teleportation of angles. Phys. Rev. A 65(4), 042316 (2002)

    ADS  Google Scholar 

  • Isenhower, L., Urban, E., Zhang, X.L., Gill, A.T., Henage, T., Johnson, T.A., Walker, T.G., Saffman, M.: Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett. 104(1), 010503 (2010)

    ADS  Google Scholar 

  • Khrennikov, A.: Quantum versus classical entanglement: eliminating the issue of quantum nonlocality. Found. Phys. 50(12), 1762–1780 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  • Kurucz, Z., Adam, P., Kis, Z., Janszky, J.: Continuous variable remote state preparation. Phys. Rev. A 72(5), 052315 (2005)

    ADS  Google Scholar 

  • Le Jeannic, H., Cavaillès, A., Raskop, J., Huang, K., Laurat, J.: Remote preparation of continuous-variable qubits using loss-tolerant hybrid entanglement of light. Optica 5(8), 1012–1015 (2018)

    ADS  Google Scholar 

  • Li, X.H., Ghose, S.: Optimal joint remote state preparation of equatorial states. Quantum Inf. Process. 14, 4585–4592 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  • Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inform. Process. 15, 929–945 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  • Li, Y.H., Li, X.I., Sang, M.H., Nie, Y.Y., Wang, ZSh.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process. 12(12), 3835–3844 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  • Li, Y.H., Nie, L.P.: Bidirectional controlled teleportation by using a five-qubit composite GHZ-Bell state. Int. J. Theor. Phys. 52, 1630–1634 (2013)

    MathSciNet  Google Scholar 

  • Li, Y.H., Nie, L.P., Li, X.L., Sang, M.H.: Asymmetric bidirectional controlled teleportation by using six-qubit cluster state. Int. J. Theor. Phys. 55(6), 3008–3016 (2016)

    MATH  Google Scholar 

  • Li, Y.H., Qiao, Y., Sang, M.H., Nie, Y.Y.: Bidirectional controlled remote state preparation of an arbitrary two-qubit state. Int. J. Theor. Phys. 58, 2228–2234 (2019)

    MATH  Google Scholar 

  • Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81(12), 2594 (1998)

    ADS  Google Scholar 

  • Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Mathemat. Phys. 48, 119–130 (1976)

    ADS  MathSciNet  MATH  Google Scholar 

  • Liu, S., Han, D., Wang, N., Xiang, Y., Sun, F., Wang, M., Qin, Z., Gong, Q., Su, X., He, Q.: Experimental demonstration of remotely creating wigner negativity via quantum steering. Phys. Rev. Lett. 128(20), 200401 (2022)

    ADS  Google Scholar 

  • Liu, W.T., Wu, W., Ou, B.Q., Chen, P.X., Li, C.Z., Yuan, J.M.: Experimental remote preparation of arbitrary photon polarization states. Phys. Rev. A 76, 022308 (2007)

    ADS  Google Scholar 

  • Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62(1), 012313 (2000)

    ADS  Google Scholar 

  • Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 283, 4796–4801 (2010)

    ADS  Google Scholar 

  • Lv, S.X., Zhao, Z.W., Zhou, P.: Multiparty-controlled joint remote preparation of an arbitrary m-qudit state with d-dimensional Greenberger–Horne–Zeilinger states. Int. J. Theor. Phys. 54, 2864–2880 (2018)

    MATH  Google Scholar 

  • Mousavi, M., Houshmand, M., Bolokian, M.: The cost reduction of distributed quantum factorization circuits. Int. J. Theor. Phys. 60, 1292–1298 (2021)

    MathSciNet  MATH  Google Scholar 

  • Nawaz, M., Islam, R.U., Ikram, M.: Remote state preparation through hyperentangled atomic states. J. Phys. B: at. Mol. Opt. Phys. 51(7), 075501 (2018)

    ADS  Google Scholar 

  • Nguyen, B.A.: Joint remote preparation of a general two-qubit state. J. Phys. b: at. Mol. Opt. Phys. 42, 125501 (2009)

    Google Scholar 

  • Nguyen, B.A., Cao, T.B.: Perfect controled joint remote state preparation independent of entanglement degree of the quantum channel. Phys. Lett. A 378, 3582–3585 (2014)

    MATH  Google Scholar 

  • O’Brien, J.L., Pryde, G.J., White, A.G., Ralph, T.C., Branning, D.: Demonstration of an all-optical quantum controlled-NOT gate. Nature 426(6964), 264–267 (2003)

    ADS  Google Scholar 

  • Oh, S., Lee, S., Lee, H.W.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. a. 66(2), 022316 (2002)

    ADS  MathSciNet  Google Scholar 

  • Peres, A.: Quantum Theory: Concepts and Methods. Springer Science & Business Media, Cham (1993)

    MATH  Google Scholar 

  • Peters, N.A., Barreiro, J.T., Goggin, M.E., Wei, T.C., Kwiat, P.G.: Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94, 150502 (2005)

    ADS  Google Scholar 

  • Pogorzalek, S., Fedorov, K.G., Xu, M., Parra-Rodriguez, A., Sanz, M., Fischer, M., Xie, E., Inomata, K., Nakamura, Y., Solano, E., Marx, A.: Secure quantum remote state preparation of squeezed microwave states. Nat. Commun. 10(1), 2604 (2019)

    ADS  Google Scholar 

  • Quek, S., Li, Z., Yeo, Y.: Effects of quantum noises and noisy quantum operations on entanglement and special dense coding. Phys. Rev. a. 81(2), 024302 (2010)

    ADS  Google Scholar 

  • Ra, Y.S., Lim, H.T., Kim, Y.H.: Remote preparation of three photon entangled states via single-photon measurement. Phys. Rev. A 94, 042329 (2016)

    ADS  Google Scholar 

  • Sadeghi Zadeh, M.S., Houshmand, M., Aghababa, H.: Bidirectional teleportation of a two-qubit state by using eight-qubit entangled state as a quantum channel. Int. J. Theor. Phys. 56, 2101–2112 (2017a)

    MathSciNet  MATH  Google Scholar 

  • Sadeghi-Zadeh, M.S., Houshmand, M., Aghababa, H., Kochakzadeh, M.H., Zarmehi, F.: Bidirectional quantum teleportation of an arbitrary number of qubits over noisy channel. Quantum Inf. Process. 18, 353 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  • Sadeghi-Zadeh, M.S., Khorrampanah, M., Houshmand, M., Aghababa, H., Mafi, Y.: n-bit quantum secret sharing protocol using quantum secure direct communication. Int. J. Theor. Phys. 60, 3744–3759 (2021)

    MathSciNet  MATH  Google Scholar 

  • Sang, M.: Bidirectional quantum controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 55(1), 380–383 (2016)

    MathSciNet  MATH  Google Scholar 

  • Sang, Z.W.: Asymmetric bidirectional controled remote state preparation by using a seven- particle entangled state. Int. J. Theor. Phys. 56, 3209–3212 (2017)

    MATH  Google Scholar 

  • Sang, M.H., Yu, D.: Controlled join remote state preparation of an arbitrary equatorial two-qubit state. Int. J. Theor. Phys. 58, 2910–2913 (2019)

    MATH  Google Scholar 

  • Sharma, V., Shukla, C., Banerjee, S., Pathak, A.: Controlled bidirectional remote state preparation in noisy environment: a generalized view. Quantum Inf. Process. 14, 3441–3464 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  • Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by using 5-qubit states: A generalized view. Int. J. Theor. Phys. 52(10), 3790–3796 (2013b)

    Google Scholar 

  • Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by using 5-qubit states: A generalized view. Int. J.theor. Phys. 52, 3790–3796 (2013a)

    Google Scholar 

  • Sun, Y.R., Chen, X.B., Xu, G., Yuan, K.G., Yang, Y.X.: Asymmetric controlled bidirectional remote preparation of two- and three-qubit equatorial state. Sci. Rep. 9, 2081 (2019)

    ADS  Google Scholar 

  • Sun, X.M., Zha, X.W.: A scheme of bidirectional quantum controlled teleportation via six-qubit maximally entangled state. Acta. Photonica. Sinica 48, 1052–1056 (2013b)

    Google Scholar 

  • Sun, X.M., Zha, X.W.: A scheme of bidirectional quantum controlled teleportation via six-qubit maximally entangled state. Acta. Photonica. Sin. 48, 1052–1056 (2013a)

    Google Scholar 

  • Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: Various tasks related to controlled quantum communication can be performed using bell states and permutation of particles. Quantum Inf. Process. 14(7), 2599–2616 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  • Wang, D., Hoehn, R.D., Ye, L., Kais, S.: Efficient remote preparation of four-qubit cluster-type entangled states with multi-party over partially entangled channels. Int. J. Theor. Phys. 55, 3454–3466 (2016)

    MathSciNet  MATH  Google Scholar 

  • Wang, J., Huang, L.: Asymmetric bidirectional quantum teleportation via six-qubit partially entangled state. Int. J. Mod. Phys. B 35(20), 2150208 (2021)

    ADS  MathSciNet  MATH  Google Scholar 

  • Wang, Z.Y., Liu, Y.M., Zuo, X.Q., Zhang, Z.J.: Controlled remote state preparation. Commun. Theor. Phys. 52, 235–240 (2009)

    ADS  MATH  Google Scholar 

  • Wang, J.W., Shu, L.: Bidirectional quantum controlled teleportation of qudit state via partially entangled GHZ-type states. Int. J. Mod. Phys. B 29(18), 1550122 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  • Wang, D., Ye, L.: Multiparty-controlled joint remote state preparation. Quantum Inf. Process. 12, 3223–3237 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  • Wang, C., Zeng, Z., Li, X.H.: Controlled remote state preparation via partially entangled quantum channel. Quantum Inf. Process. 14, 1077–1089 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  • Xiang, G.Y., Li, J., Yu, B., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)

    ADS  Google Scholar 

  • Yan, A.: Bidirectional controlled teleportation via six-qubit cluster state. Int. J. Theor. Phys. 52, 3870–3873 (2013a)

    MathSciNet  MATH  Google Scholar 

  • Yu, T., Eberly, J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97(14), 140403 (2006)

    ADS  Google Scholar 

  • Yuan, H., Pan, G.Z.: Improving the bidirectional quantum teleportation scheme via five-qubit cluster state. Int. J. Theor. Phys. 59, 3387–3395 (2020)

    MathSciNet  MATH  Google Scholar 

  • Zadeh, M.S., Houshmand, M., Aghababa, H.: Bidirectional quantum teleportation of a class of n-qubit states by using (2 n+ 2)-qubit entangled states as quantum channel. Int. J. Theor. Phys. 57, 175–183 (2018b)

    MATH  Google Scholar 

  • Zarmehi, F., Kochakzadeh, M.H., Abbasi-Moghadam, D., Talebi, S.: Efficient circular controled quantum teleportation and broadcast schemes in the presence of quantum noises. Quantum Inf. Process. 20, 175 (2021)

    ADS  MATH  Google Scholar 

  • Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52, 1740–1744 (2013b)

    MathSciNet  Google Scholar 

  • Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52, 1740–1744 (2013a)

    MathSciNet  Google Scholar 

  • Zha, X. W., Song, H. Y. and Ma, G. L., “Bidirectional swapping quantum controlled teleportation based on maximally entangled five-qubit state”, arXiv: 1006.0052 [quant-ph, (2010).

  • Zhang, D., Zha, X.W., Duan, Y.J.: Bidirectional and asymmetric quantum controlled teleportation. Int. J. Theor. Phys. 54, 1711–1719 (2015)

    MATH  Google Scholar 

  • Zhou, K.H., Shi, L., Luo, B.B., Xue, Y., Huang, C., Ma, Z.Q., Wei, J.H.: Deterministic controled remote state preparation of real-parameter multi-qubit states via maximal slice states. Int. J. Theor. Phys. 58, 4079–4092 (2019)

    MATH  Google Scholar 

  • Zu, C., Wang, W.B., He, L., Zhang, W.G., Dai, C.Y., Wang, F., Duan, L.M.: Experimental realization of universal geometric quantum gates with solid-state spins. Nature 514(7520), 72–75 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

M. Bolokian: Conceptualization, Writing—original draft, Quantum computing, Software. Ali A. Orouji: Supervision—review & editing. Monireh Houshmand: Advisor, review & editing.

Corresponding author

Correspondence to Ali Asghar Orouji.

Ethics declarations

Conflicts of interest

The authors declare that they have no potential conflicts of interests.

Consent for publication

Not applicable.

Ethics approval and consent to participate

Not applicable.

Human and/or Animals resources

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolokian, M., Orouji, A.A. & Houshmand, M. A bidirectional quantum remote state preparation scheme and its performance analysis in noisy environments. Opt Quant Electron 55, 835 (2023). https://doi.org/10.1007/s11082-023-05110-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05110-2

Keywords