Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Biorder Polytope

  • Published:
Order Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Biorders, also called Ferrers relations, formalize Guttman scales. Irreflexive biorders on a set are exactly the interval orders on that set. The biorder polytope is the convex hull of the characteristic matrices of biorders. Its definition is thus similar to the definition of other order polytopes, the linear ordering polytope being the proeminent example. We investigate the combinatorial structure of the biorder polytope, thus obtaining a complete linear description in a specific case, and the automorphism group in all cases. Moreover, a class of facet-defining inequalities defined from weighted graphs is thoroughly analyzed. A weighted generalization of stability-critical graphs is presented, which leads to new facets even for the well-studied linear ordering polytope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bolotashvili, G., Kovalev, M. and Girlich, E.: New facets of the linear ordering polytope, SIAM J. Discrete Math. 12 (1999), 326-336.

    Article  MATH  MathSciNet  Google Scholar 

  2. Borndörfer, R. and Weismantel, R.: Set packing relaxations of some integer programs, Math. Programming 88 (2000), 425-450.

    Article  MATH  Google Scholar 

  3. Christof, T.: PORTA - a POlyhedron Representation Transformation Algorithm. Version 1.3.2 (1999), written by T. Christof, maintained by A. Loebel and M. Stoer, available at http://www.informatik.uni-heidelberg.de/groups/comopt/software/PORTA/.

  4. Christophe, J.: Le polytope des biordres, Master’s thesis, Université Libre de Bruxelles, Département de Mathématiques, Brussels, Belgium, 2002.

    Google Scholar 

  5. Christophe, J., Doignon, J.-P. and Fiorini, S.: Counting biorders, J. Integer Sequences 6 (2003). Article 03.4.3, 10 pages.

  6. Diestel, R.: Graph Theory, 2nd edn, Springer-Verlag, New York, 2000.

    Google Scholar 

  7. Doignon, J.-P., Ducamp, A. and Falmagne, J.-C.: On realizable biorders and the biorder dimension of a relation, J. Math. Psychol. 28 (1984), 73-109.

    Article  MATH  MathSciNet  Google Scholar 

  8. Doignon, J.-P. and Fiorini, S.: Vertex projections of polytopes (title tentative), In preparation, 2004.

  9. Doignon, J.-P. and Regenwetter, M.: An approval-voting polytope for linear orders, J. Math. Psychol. 41 (1997), 171-188.

    Article  MATH  MathSciNet  Google Scholar 

  10. Fiorini, S.: Determining the automorphism group of the linear ordering polytope, Discrete Appl. Math. 112 (2001), 121-128.

    Article  MATH  MathSciNet  Google Scholar 

  11. Fishburn, P.: Induced binary probabilities and the linear ordering polytope: A status report, Math. Social Sci. 23 (1992), 67-80.

    Article  MATH  MathSciNet  Google Scholar 

  12. Guttman, L.: A basis for scaling quantitative data, Amer. Sociol. Rev. 9 (1944), 139-150.

    Article  MathSciNet  Google Scholar 

  13. Koppen, M.: Random utility representation of binary choice probabilities: Critical graphs yielding critical necessary conditions, J. Math. Psychol. 39 (1995), 21-39.

    Article  MATH  MathSciNet  Google Scholar 

  14. Leung, J. and Lee, J.: More facets from fences for linear ordering and acyclic subgraph polytopes, Discrete Appl. Math. 50 (1994), 185-200.

    Article  MATH  MathSciNet  Google Scholar 

  15. Lipták, L. and Lovász, L.: Critical facets of the stable set polytope, Combinatorica 21 (2001), 61-88.

    Article  MathSciNet  Google Scholar 

  16. Monjardet, B.: Axiomatiques et propriétés des quasi-ordres, Math. Inform. Sci. Humaines 63 (1978), 51-82.

    MATH  MathSciNet  Google Scholar 

  17. Müller, R. and Schulz, A.: The interval order polytope of a digraph, in E. Balas and J. Clausen (eds), Integer Programming and Combinatorial Optimization, Lecture Notes in Comput. Sci. 920, Proceedings of the 4th International IPCO Conference, 1995, pp. 50-64.

  18. Reinelt, G.: The Linear Ordering Problem: Algorithms and Applications, Heldermann Verlag, Berlin, 1985.

    Google Scholar 

  19. Riguet, J.: Les relations de Ferrers, C. R. Acad. Sci. Paris 232 (1951), 1729-1730.

    MATH  MathSciNet  Google Scholar 

  20. Suck, R.: Geometric and combinatorial properties of the polytope of binary choice probabilities, Math. Social Sci. 23 (1992), 81-102.

    Article  MATH  MathSciNet  Google Scholar 

  21. Trotter, W.: Combinatorics and Partially Ordered Sets: Dimension Theory, The Johns Hopkins University Press, Baltimore, MD, 1992.

    Google Scholar 

  22. Ziegler, G. M.: Lectures on Polytopes, revised edn, Springer-Verlag, Berlin, 1998.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christophe, J., Doignon, JP. & Fiorini, S. The Biorder Polytope. Order 21, 61–82 (2004). https://doi.org/10.1007/s11083-004-5129-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-004-5129-7