Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Distributive Lattice Structure Connecting Dyck Paths, Noncrossing Partitions and 312-avoiding Permutations

  • Published:
Order Aims and scope Submit manuscript

Abstract

In [Ferrari, L. and Pinzani, R.: Lattices of lattice paths. J. Stat. Plan. Inference 135 (2005), 77–92] a natural order on Dyck paths of any fixed length inducing a distributive lattice structure is defined. We transfer this order to noncrossing partitions along a well-known bijection [Simion, R.: Noncrossing partitions. Discrete Math. 217 (2000), 367–409], thus showing that noncrossing partitions can be endowed with a distributive lattice structure having some combinatorial relevance. Finally we prove that our lattices are isomorphic to the posets of 312-avoiding permutations with the order induced by the strong Bruhat order of the symmetric group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aigner, M.: Combinatorial Theory, Springer, Berlin Heidelberg New York, 1979.

    MATH  Google Scholar 

  2. Aigner, M.: Catalan and other numbers: A recurrent theme, In: H. Crapo and D. Senato (eds.), Algebraic Combinatorics and Computer Science, Springer, Milano, 2001, pp. 347–390.

    Google Scholar 

  3. Babson, E. and Steingrímsson, E.: Generalized permutation patterns and a classification of the Mahonian statistics, Sém. Lothar. Combin. 44 (2000), Art. B44b, 18 pp.

  4. Banderier, C., Bousquet-Mélou, M., Denise, A., Flajolet, P., Gardy, D. and Gouyou-Beauchamps, D.: Generating functions for generating trees, Discrete Math. 246 (2002), 29–55.

    Article  MATH  MathSciNet  Google Scholar 

  5. Bandlow, J. and Killpatrick, K.: An area-to-inv bijection between Dyck paths and 312-avoiding permutations, Electron. J. Combin. 8 (2001), #R40, (16 pp.)

  6. Barcucci, E., Del Lungo, A., Pergola, E. and Pinzani, R.: ECO: A methodology for the enumeration of combinatorial objects, J. Differ. Equ. Appl. 5 (1999), 435–490.

    Article  MATH  Google Scholar 

  7. Bernini, A., Ferrari, L. and Pinzani, R.: Enumerating permutations avoiding three Babson–Steingrímsson patterns, Ann. Comb. 9 (2005), 137–162.

    Article  MATH  MathSciNet  Google Scholar 

  8. Bjorner, A. and Wachs, M.: Shellable nonpure complexes and posets. II, Trans. Am. Math. Soc. 349 (1997), 3945–3975.

    Article  MathSciNet  Google Scholar 

  9. Cautis, S. and Jackson, D. M.: The matrix of chromatic joins and the Temperley–Lieb algebra, J. Comb. Theory, Ser. B 89 (2003) 109–155.

    Article  MATH  MathSciNet  Google Scholar 

  10. Claesson, A.: Generalized pattern avoidance, Eur. J. Comb. 22 (2001), 961–971.

    Article  MATH  MathSciNet  Google Scholar 

  11. Claesson, A. and Mansour, T.: Enumerating permutations avoiding a pair of Babson–Steingrímsson patterns, Ars Comb. (to appear).

  12. Davey, B. A. and Priestley, H. A.: Introduction to Lattices and Order, Cambridge University Press, Cambridge, 1990.

    MATH  Google Scholar 

  13. Denise, A. and Simion, R.: Two combinatorial statistics on Dyck paths, Discrete Math. 137 (1995), 155–176.

    Article  MATH  MathSciNet  Google Scholar 

  14. Deutsch, E.: Dyck path enumeration, Discrete Math. 204 (1999), 167–202.

    Article  MATH  MathSciNet  Google Scholar 

  15. Drake, B.: The Weak Order on Pattern-Avoiding Permutations, Proceedings of FPSAC 2005.

  16. Elizalde, S. and Pak, I.: Bijections for refined restricted permutations, J. Comb. Theory, Ser. A 105 (2004), 207–219.

    Article  MATH  MathSciNet  Google Scholar 

  17. Fulmek, M.: Enumeration of permutations containing a prescribed number of occurrences of a pattern of length three, Adv. Appl. Math. 30 (2003), 607–632.

    Article  MATH  MathSciNet  Google Scholar 

  18. Ferrari, L. and Pinzani, R.: A linear operator approach to succession rules, Linear Algebra Appl. 348 (2002), 231–246.

    Article  MATH  MathSciNet  Google Scholar 

  19. Ferrari, L. and Pinzani, R.: Lattices of lattice paths, J. Stat. Plan. Inference 135 (2005), 77–92.

    Article  MATH  MathSciNet  Google Scholar 

  20. Guibert, O., Pergola, E. and Pinzani, R.: Vexillary involutions are enumerated by Motzkin numbers, Ann. Comb. 5 (2001), 153–174.

    Article  MATH  MathSciNet  Google Scholar 

  21. Krattenthaler, C.: Permutations with restricted patterns and Dyck paths, Adv. Appl. Math. 27 (2001), 510–530.

    Article  MATH  MathSciNet  Google Scholar 

  22. Kreweras, G.: Sur les partitions non croisées d’un cycle, Discrete Math. 1 (1972), 333–350.

    Article  MATH  MathSciNet  Google Scholar 

  23. Narayana, T. V.: Lattice Path Combinatorics with Statistical Applications, University of Toronto, Toronto, 1979.

    MATH  Google Scholar 

  24. Pergola, E., Pinzani, R. and Rinaldi, S.: ECO-approximation of algebraic functions, In: D. Krob, A. A. Mikhalev, A. V. Mikhalev (eds.), Formal Power Series and Algebraic Combinatorics, Springer, Berlin Heidelberg New York, 2000.

    Google Scholar 

  25. Proctor, R. A.: Bruhat lattices, plane partitions generating functions, and minuscule representations, Eur. J. Comb. 5 (1984), 331–350.

    MATH  MathSciNet  Google Scholar 

  26. Reifegerste, A.: On the diagram of 132-avoiding permutations, Eur. J. Comb. 24 (2003), 759–776.

    Article  MATH  MathSciNet  Google Scholar 

  27. Simion, R.: Noncrossing partitions, Discrete Math. 217 (2000), 367–409.

    Article  MATH  MathSciNet  Google Scholar 

  28. Simion, R. and Schmidt, F. W.: Restricted permutations, Eur. J. Comb. 6 (1985), 383–406.

    MATH  MathSciNet  Google Scholar 

  29. Sloane, N. J. A.: The On-Line Encyclopedia of Integer Sequences, at http://www.research.att.com/~njas/sequences/index.html.

  30. Stanley, R. P.: Enumerative Combinatorics 1, Cambridge University Press, New York, 1997.

    MATH  Google Scholar 

  31. Stanley, R. P.: Enumerative Combinatorics 2, Cambridge University Press, Cambridge, 1999.

    MATH  Google Scholar 

  32. West, J.: Generating trees and the Catalan and Schröder numbers, Discrete Math. 146 (1995), 247–262.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Ferrari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barcucci, E., Bernini, A., Ferrari, L. et al. A Distributive Lattice Structure Connecting Dyck Paths, Noncrossing Partitions and 312-avoiding Permutations. Order 22, 311–328 (2005). https://doi.org/10.1007/s11083-005-9021-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-005-9021-x

Key Words